|
a
|=3,|
b
|=4,向量
a
+
3
4
b
a
-
3
4
b
的位置關系為( 。
A、平行
B、垂直
C、不平行也不垂直
D、夾角為
π
3
考點:平面向量數(shù)量積的運算
專題:平面向量及應用
分析:先求出向量
a
+
3
4
b
a
-
3
4
b
的數(shù)量積,如果為0,則垂直;否則存在其他位置關系.
解答: 解:∵(
a
+
3
4
b
)•(
a
-
3
4
b
)=
a
2
-
9
16
b
2
=0,
∴向量
a
+
3
4
b
a
-
3
4
b
的位置關系垂直,
故選:B
點評:本題考查向量的數(shù)量積判斷兩個向量的垂直關系,考查計算能力,是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(1,
3
),
b
=(sin(x+θ)),cos(x+θ))若函數(shù)f(x)=
a
b
為偶函數(shù),則θ的值可能是( 。
A、
π
6
B、
π
3
C、-
π
6
D、-
π
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列
1
12+1
,
1
22+2
,
1
32+3
,…,
1
n2+n
前n項和為
11
12
,則n為( 。
A、10B、11C、12D、13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題中,其中假命題是( 。
A、對分類變量X與Y的隨機變量K2的觀測值k來說,k越小,“X與Y有關系”可信程度越大.
B、用相關指數(shù)R2來刻畫回歸的效果時,R2的值越大,說明模型擬合的效果越好.
C、兩個隨機變量相關性越強,則相關系數(shù)的絕對值越接近1.
D、樣本數(shù)據(jù)的標準差越大,則數(shù)據(jù)的離散程度越大;標準差越小,則數(shù)據(jù)的離散程度越。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若tan20°+msin20°=
3
,則實數(shù)m的值為( 。
A、
1
4
B、
1
2
C、2
D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從2011名學生中選出50名學生組成參觀團,若采用下面的方法選。含F(xiàn)用簡單隨機抽樣從2011人中剔除11人,剩下的2000人再按系統(tǒng)抽樣的方法抽取50人,則在2011人中,每人入選的概率(  )
A、都相等,且為
1
40
B、不全相等
C、均不相等
D、都相等,且為
50
2011

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

集合A={y|y=x2-1},B={x|y=
1-x2
},則A與B的關系是( 。
A、A?BB、A⊆B
C、A=BD、A∩B是空集

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲、乙兩人下棋,兩人下成和棋的概率是
1
2
,乙獲勝的概率是
1
3
,則甲獲勝的概率是( 。
A、
1
6
B、
1
2
C、
2
3
D、
5
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),其左、右焦點分別為F1、F2,離心率為
6
3
,點R坐標為(2
2
,
6
),又點F2在線段RF1的中垂線上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設橢圓C的左右頂點分別為A1,A2,點P在直線x=-2
3
上(點P不在x軸上),直線PA1與橢圓C交于點N,直線PA2與橢圓C交M,線段MN的中點為Q,證明:2|A1Q|=|MN|.

查看答案和解析>>

同步練習冊答案