3.已知直線y=x+k與曲線y=ex相切,則k的值為( 。
A.eB.2C.1D.0

分析 設(shè)切點(diǎn)為(x0,y0),求出切線斜率,利用切點(diǎn)在直線上,代入方程,即可得到結(jié)論.

解答 解:設(shè)切點(diǎn)為(x0,y0),則y0=ex0,
∵y′=(ex)′=ex,∴切線斜率k=ex0,
又點(diǎn)(x0,y0)在直線上,代入方程得y0=k+x0,
即ex0=ex0 +x0,
解得x0=0,k=1,
故選:C.

點(diǎn)評 本題考查切線方程,考查導(dǎo)數(shù)的幾何意義,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)$f(x)=\left\{\begin{array}{l}{2^x}({x≤0})\\ \sqrt{x}({x>0})\end{array}\right.$若函數(shù)g(x)=f(x)-k(x-1)有且只有一個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍是( 。
A.(-∞,-1)B.(0,+∞)C.(-1,0)D.(-∞,-1)∪(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓C:$\frac{{x}^{2}}{2}+{y}^{2}=1$和圓O:x2+y2=1,過點(diǎn)A(m,0)(m>1)作兩條互相垂直的直線l1,l2,l1于圓O相切于點(diǎn)P,l2與橢圓相交于不同的兩點(diǎn)M,N.
(1)若m=$\sqrt{2}$,求直線l1的方程;
(2)求m的取值范圍;
(3)求△OMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知a∈R,函數(shù)f(x)═log2($\frac{1}{x}$+a).
(1)若f(1)<2,求實(shí)數(shù)a的取值范圍;
(2)設(shè)函數(shù)g(x)=f(x)-log2[(a-4)x+2a-5],討論函數(shù)g(x)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.兩座燈塔A和B與海洋觀測站C的距離分別是akm和2akm,燈塔A在觀測站C的北偏東20°,燈塔B在觀測站C的南偏東70°,則燈塔A與燈塔B之間的距離為( 。
A.$\sqrt{3}$akmB.2akmC.$\sqrt{5}$akmD.$\sqrt{7}$akm

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知p:函數(shù)f(x)=lg(x2-2x+a)的定義域?yàn)镽;q:對任意實(shí)數(shù)x,不等式4x2+ax+1>0成立,若“p∨q”為真,“p∧q”為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.要從165名學(xué)生中抽取15人進(jìn)行視力檢查,現(xiàn)采用分層抽樣法進(jìn)行抽取,若這165名同學(xué)中,高中生為66人,則高中生中被抽取參加視力檢查的人數(shù)為( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的左焦點(diǎn)為F1,對定點(diǎn)M(6,4),若P為橢圓上一點(diǎn),則|PF1|+|PM|的最大值為15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若函數(shù)f(x)=x2+$\frac{a-1}{x}$為偶函數(shù),則實(shí)數(shù)a=1.

查看答案和解析>>

同步練習(xí)冊答案