證明:f(x)=
1
x2
在(0,+∞)上是減函數(shù).
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:先求出函數(shù)的導(dǎo)數(shù),由導(dǎo)數(shù)值小于0,得出函數(shù)是減函數(shù).
解答: 證明:∵f(x)=
1
x2
,(x>0),
∴f′x)=-
2
x3
<0,
∴f(x)=
1
x2
在(0,+∞)上是減函數(shù).
點(diǎn)評:本題考察了函數(shù)的單調(diào)性,導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立坐標(biāo)系.已知點(diǎn)A的極坐標(biāo)為(2
2
,
π
4
),直線L的極坐標(biāo)方程為ρcos(θ-
π
4
)=a,且點(diǎn)A在直線L上.
(1)求a的值及直線L的直角坐標(biāo)方程.
(2)圓C的參數(shù)方程
x=1+cosα
y=-1+sinα
(α為參數(shù)),試判斷直線L與圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知an=n2+n,bn=(-1)n-1,(n∈N*),設(shè)cn=
(2n+1)bn
an
,數(shù)列{cn}的前n項(xiàng)和為Tn,求證:T2n<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xoy中,已知曲線C的參數(shù)方程為
x=2cosα
y=sinα
(α為參數(shù)).以直角坐標(biāo)系原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos(θ-
π
4
)=2
2

(Ⅰ)求直線l的直角坐標(biāo)方程;
(Ⅱ)點(diǎn)P為曲線C上的動點(diǎn),求點(diǎn)P到直線l距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},a1=2,an=2an-1+2n(n≥2)
(1)求證:{
an
2n
}為等差數(shù)列;
(2)求{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在某次數(shù)學(xué)考試中,從高一年級300名男生和300名女生中,各隨機(jī)抽取20名學(xué)生的成績進(jìn)行統(tǒng)計,作出莖葉圖如圖所示:
(1)根據(jù)樣本統(tǒng)計結(jié)果,估計全年級90分以上的共有多少人?
(2)若記不低于90分者為優(yōu)秀,則在抽取的樣本里不低于86分的男生和女生中各選一人,求兩人均為優(yōu)秀的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)(1+x+x2n=a0+a1x+a2x2+…+a2nx2n,那么a2+a4+…+a2n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,an≠0,且a1,a3,a4成等比數(shù)列,公比為q,則q=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

球O的球面上有三點(diǎn)A,B,C,且BC=3,∠BAC=30°,過A,B,C三點(diǎn)作球O的截面,球心O到截面的距離為4,則該球的體積為
 

查看答案和解析>>

同步練習(xí)冊答案