【題目】已知函數(shù).
(1)若曲線在處的切線的斜率為3,求實(shí)數(shù)的值;
(2)若函數(shù)在區(qū)間上存在極小值,求實(shí)數(shù)的取值范圍;
(3)如果的解集中只有一個(gè)整數(shù),求實(shí)數(shù)的取值范圍.
【答案】(1)(2)(3)
【解析】
(1)先求出,利用可求.
(2)因函數(shù)在區(qū)間上存在極小值,故在上有解,利用求根公式求出的較大的根,它在區(qū)間中,從而得到的取值范圍,
(3)利用導(dǎo)數(shù)可得當(dāng)時(shí),為上的增函數(shù),而,故無整數(shù)解;當(dāng)時(shí),因在上有兩個(gè)不同的解且,所以在上為增函數(shù),在上為減函數(shù),在上為增函數(shù),結(jié)合可以得到,從而得到的取值范圍.
(1)由題意,,
由題意知,,所以,解得.
(2)令,所以,所以(舍負(fù)),
因?yàn)楹瘮?shù)在上存在極小值,所以,
解之得,
經(jīng)檢驗(yàn),當(dāng)時(shí),符合題意,
所以.
(3)①當(dāng),即時(shí),恒成立,
在上為增函數(shù),.
所以當(dāng)時(shí),,所以當(dāng)時(shí),,所以無整數(shù)解;
②當(dāng),即或時(shí),
若,則,同①可得無整數(shù)解;
若,即在上有兩個(gè)不同的解且,
當(dāng)時(shí),,在上為增函數(shù);
當(dāng)時(shí),,在上為減函數(shù);
當(dāng)時(shí),,在上為增函數(shù),
而,所以在上無解,故在上只有一個(gè)整數(shù)解,
故,即,
解得,
綜上,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的左焦點(diǎn)為,上頂點(diǎn)為.已知橢圓的短軸長為4,離心率為.
(1)求橢圓的方程;
(2)設(shè)點(diǎn)在橢圓上,且異于橢圓的上、下頂點(diǎn),點(diǎn)為直線與軸的交點(diǎn),點(diǎn)在軸的負(fù)半軸上.若(為原點(diǎn)),且,求證:直線的斜率與直線MN的斜率之積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在數(shù)列{an}中,設(shè)a1為首項(xiàng),其前n項(xiàng)和為Sn,若對(duì)任意的正整數(shù)m,n都有不等式S2m+S2n<2Sm+n(m≠n)恒成立,且2S6<S3.
(1)設(shè)數(shù)列{an}為等差數(shù)列,且公差為d,求的取值范圍;
(2)設(shè)數(shù)列{an}為等比數(shù)列,且公比為q(q>0且q≠1),求a1q的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線的焦點(diǎn)為F,準(zhǔn)線為l,A為C上一點(diǎn),已知以F為圓心,FA為半徑的圓F交l于M.N點(diǎn).
(1)若,的面積為,求拋物線方程;
(2)若A.M.F三點(diǎn)在同一直線m上,直線n與m平行,且n與C只有一個(gè)公共點(diǎn),求坐標(biāo)原點(diǎn)到直線n、m距離的比值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列中,,且對(duì)任意,成等差數(shù)列,其公差為.
(1)若,求的值;
(2)若,證明成等比數(shù)列();
(3)若對(duì)任意,成等比數(shù)列,其公比為,設(shè),證明數(shù)列是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面,是邊長為的正方形.且,點(diǎn)是的中點(diǎn).
(1)求證:;
(2)求平面與平面所成銳二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面ABCD是直角梯形,,∥,側(cè)棱平面ABCD,且.
(1)求證:平面平面;
(2)求平面與平面所成二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),且),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.
(1)將曲線的參數(shù)方程化為普通方程,并將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)求曲線與曲線交點(diǎn)的極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠要建造一個(gè)長方體無蓋貯水池,其容積為,深3m.如果池底每平方米的造價(jià)為200元,池壁每平方米的造價(jià)為150元,怎樣設(shè)計(jì)水池能使總造價(jià)最低?最低總造價(jià)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com