設(shè)關(guān)于x的方程x2+2(k-1)x+2k+6=0有兩個(gè)正實(shí)根,則k的取值范圍為
 
考點(diǎn):函數(shù)的零點(diǎn)與方程根的關(guān)系
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)一元二次方程方程根的符號(hào),利用根與系數(shù)之間的關(guān)系即可得到結(jié)論.
解答: 解:設(shè)方程的兩個(gè)正根分別為x1,x2
則由根與系數(shù)之間的關(guān)系可得
△=4(k-1)2-4(2k+6)≥0
x1x2=2k+6>0
x1+x2=-2(k-1)>0
,
k2-4k-5≥0
k>-3
k<1
,則
k≥5或k≤-1
k>-3
k<1

即-3<k≤-1,
故k的取值范圍為(-3,-1],
故答案為:(-3,-1]
點(diǎn)評(píng):本題主要考查一元二次方程根的根的應(yīng)用,根據(jù)根與系數(shù)之間的關(guān)系是解決本題的關(guān)鍵.本題也可以使用函數(shù)法來(lái)進(jìn)行求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知四邊形ABCD為直角梯形,AB∥CD,∠BAD=90°,PA⊥平面ABCD,CD=2,PA=AD=AB=1,E為PC的中點(diǎn).
(1)求證:EB∥平面PAD;
(2)求直線BD與平面PCD所成的角;
(3)求二面角A-PC-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定點(diǎn)M(0,-1),點(diǎn)N是⊙F:x2+(y-1)2=8(F為圓心)上的動(dòng)點(diǎn),線段MN的垂直平分線交NF于點(diǎn)G,記點(diǎn)G的軌跡為曲線E.
(Ⅰ)求曲線E的方程;
(Ⅱ)若直線l:y=kx+1與曲線E相交于A、B兩個(gè)不同點(diǎn),以AB為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn),求直線l方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=(x-1)2-2的遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線y=
1
4
x2的準(zhǔn)線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,A、B分別是射線OM,ON上的兩點(diǎn),給出下列向量:
OA
+2
OB
;②
1
2
OA
+
1
3
OB
;③
3
4
OA
+
1
3
OB
;④
3
4
OA
+
1
5
OB
;⑤
3
4
OA
-
1
5
OB
這些向量中以O(shè)為起點(diǎn),終點(diǎn)在陰影區(qū)域內(nèi)的是
 
.(填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知正方形ABCD的邊長(zhǎng)為1,E在CD延長(zhǎng)線上,且DE=CD.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿正方形ABCD的邊按逆時(shí)針?lè)较蜻\(yùn)動(dòng)一周回到A點(diǎn),其中
AP
AB
AE
,則下列命題正確的是
 
.(填上所有正確命題的序號(hào))
①λ≥0,μ≥0;
②當(dāng)點(diǎn)P為AD中點(diǎn)時(shí),λ+μ=1;
③若λ+μ=2,則點(diǎn)P有且只有一個(gè);
④λ+μ的最大值為3;
AP
AE
的最大值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

李明同學(xué)衣服上有左、右兩個(gè)口袋,左口袋有15張不同的英語(yǔ)單詞卡片,右口袋有20張不同的英語(yǔ)單詞卡片,從這兩個(gè)口袋任取一張,共有
 
種不同的取法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在梯形ABCD中,AB∥CD,AB=2CD,M、N分別為CD、BC的中點(diǎn),若
AB
AM
AN
,則λ+μ=( 。
A、
1
5
B、
2
5
C、
3
5
D、
4
5

查看答案和解析>>

同步練習(xí)冊(cè)答案