如圖,棱柱ABCD-A1B1C1D1的所有棱長(zhǎng)都等于2,∠ABC=60°,平面AA1C1C⊥平面ABCD,∠A1AC=60°.
(1)證明:BD⊥AA1;
(2)求二面角A1-C1D-B的平面角的余弦值.
考點(diǎn):與二面角有關(guān)的立體幾何綜合題,空間中直線與直線之間的位置關(guān)系
專題:綜合題,空間位置關(guān)系與距離,空間角
分析:(1)連接BD交AC于O,則BD⊥AC,連接A1O,可證A1O⊥底面ABCD,從而建立空間直角坐標(biāo)系,求出向量的坐標(biāo),證明向量的數(shù)量積為0 即可得到BD⊥AA1
(2)確定平面A1C1D、平面BC1D的法向量,利用向量的夾角公式,可求二面角A1-C1D-B的平面角的余弦值.
解答: (1)證明:連接BD交AC于O,則BD⊥AC,連接A1O,
在△AA1O中,AA1=2,AO=1,∠A1AO=60°
∴A1O2=AA12+AO2-2AA1•AOcos60°=3
∴AO2+A1O2=AA12
∴A1O⊥AO,
∵平面AA1C1C⊥平面ABCD,平面AA1C1C∩平面ABCD=AO
∴A1O⊥底面ABCD
∴以O(shè)B、OC、OA1所在直線為x軸、y軸、z軸建立如圖所示空間直角坐標(biāo)系,
則A(0,-1,0),B(
3
,0,0),C(0,1,0),D(-
3
,0,0),
A1(0,0,
3
)                         
BD
=(-2
3
,0,0),
AA1
=(0,1,
3
),
BD
AA1
=0
∴BD⊥AA1;
(2)設(shè)平面A1C1D的一個(gè)法向量為
n
=(x,y,z),則
A1C1
=(0,2,0),
A1D
=(-
3
,0,-
3
),
2y=0
-
3
x-
3
z=0
,∴
n
=(1,0,-1)
同理平面BC1D的一個(gè)法向量為為
m
=(0,
3
,-2),
∴cos<
n
m
>=
2
2
7
=
14
7
點(diǎn)評(píng):本題考查線面位置關(guān)系,考查面面角,考查利用向量方法解決立體幾何問(wèn)題,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD為菱形,PA⊥底面ABCD.PA=AB=2,∠BAD=120°,E是PC上的一點(diǎn),且BE與平面PAB所成角的正弦值為
3
4

(1)證明:E為PC的中點(diǎn);
(2)求二面角A-BE-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=n2,n∈N*,數(shù)列{bn}滿足:bn=2n•an,且{bn}的前n項(xiàng)和記為Tn
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)證明:對(duì)任意n∈N*,Tn≥2恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C的圓心坐標(biāo)為(2,2),且和直線3x+4y-9=0相切.
(1)求圓C的方程;
(2)是否存在實(shí)數(shù)a,使圓C與直線x-y+a=0交于A、B兩點(diǎn),且滿足∠AOB=90°.若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在區(qū)間D上,如果函數(shù)f(x)為增函數(shù),而函數(shù)
1
x
f(x)也是增函數(shù),則稱函數(shù)f(x)為區(qū)間D上的“和諧”函數(shù).已知函數(shù)f(x)=1-
1
x

(Ⅰ)判斷函數(shù)f(x)在區(qū)間[
1
4
9
4
]上是否為“和諧”函數(shù);
(Ⅱ)若P是函數(shù)f(x)圖象上的任一點(diǎn),求點(diǎn)P到直線x-2y=0的最短距離;
(Ⅲ)當(dāng)x∈[
1
4
,
9
4
]時(shí),不等式1-ax≤
1
x
≤1+2ax恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3+ax+b,a,b∈R的圖象記為曲線E,過(guò)一點(diǎn)A(
1
2
,-
3
8
)作曲線E的切線,這樣的切線有且僅有兩條.
(Ⅰ)求a+2b的值;
(Ⅱ)若點(diǎn)A在曲線E上,對(duì)任意的x∈[0,1],求證:f(x)+|a+3b+1|+
1
2
≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

四棱錐S-ABCD的底面是菱形,SD⊥平面ABCD,點(diǎn)E是SD的中點(diǎn).
(Ⅰ)求證:SB∥平面EAC;
(Ⅱ)求證:平面SAC⊥平面SBD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

公比為正的等比數(shù)列{an}的前n項(xiàng)和為Sn,且2a1+a2=a3,S3+2=a4
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=log2an,數(shù)列{
1
b nb n+1
}的前n項(xiàng)和為Tn,求T2013的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}的前n項(xiàng)和Sn=2n2-3n+1,則a4+a5+…+a10=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案