已知函數(shù)f(x)=
(3-a)x+2(x≤2)
a2x2-9x+11(x>2)
,(a>0,且a≠1),若數(shù)列{an}滿足an=f(n),(n∈N+),且{an}是遞增數(shù)列,則實數(shù)a的取值范圍是( 。
A、(0,1)
B、[
8
3
,3)
C、(1,3)
D、(2,3)
考點:數(shù)列的函數(shù)特性
專題:點列、遞歸數(shù)列與數(shù)學歸納法
分析:根據(jù)分段函數(shù)的性質(zhì)可得:函數(shù)在各段上均為增函數(shù),根據(jù)一次函數(shù)和指數(shù)函數(shù)單調(diào)性列出不等式組,解不等式組可得實數(shù)a的取值范圍.
解答: 解:因為函數(shù)f(x)=
(3-a)x+2(x≤2)
a2x2-9x+11(x>2)
,an=f(n),且{an}是遞增數(shù)列,
所以
3-a>0
a>1
a22-9×2+11≤(3-a)×2+2
,解得
8
3
a<3,
所以實數(shù)a的取值范圍是[
8
3
,3).
故選:B.
點評:本題考查數(shù)列和分段函數(shù)的單調(diào)性,以及一次函數(shù)和指數(shù)函數(shù)單調(diào)性,注意分界點處的函數(shù)值的大小關(guān)系,必須滿足函數(shù)的單調(diào)性,解答此題的關(guān)鍵是列出等價的條件,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)集合A={0},B={2,m},且A∪B={-1,0,2},則實數(shù)m等于( 。
A、-1B、1C、0D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

向量
a
b
滿足|
a
|=1,|
b
|=
2
,(
a
+
b
)⊥(2
a
-
b
),則向量
a
b
的夾角為( 。
A、45°B、60°
C、90°D、120°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
b
滿足|
a
|=2|
b
|≠0,且關(guān)于x的函數(shù)f(x)=
1
3
x3+
1
2
|
a
|x2+
a
b
x在R上有極值,則
a
b
的夾角的取值范圍為( 。
A、(
π
3
,π]
B、[
π
3
,π]
C、(0,
π
3
]
D、(
π
3
,
5
3
π
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某同學離家去學校,為了鍛煉身體,開始跑步前進,跑累了再走余下的路程,圖中d軸表示該學生離學校的距離,t軸表示所用的時間,則符合學生走法的只可能是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列方程在(0,1)內(nèi)存在實數(shù)解的是(  )
A、x2+x-3=0
B、
1
x
+1=0
C、
1
2
x+lnx=0
D、x2-lgx=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在邊長為2的正三角形ABC中,
BD
=
1
2
BA
,
CE
=
1
2
CA
,則
CD
BE
的值為( 。
A、-
5
8
B、-
3
4
C、-
3
2
D、-
3
8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)和g(x)均為奇函數(shù),h(x)=af(x)+bg(x)+2在區(qū)間(0,+∞)上有最大值5,那么h(x)在(-∞,0)上的最小值為( 。
A、-5B、-1C、-3D、5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知幾何體A-BCED的三視圖如圖所示,其中俯視圖和側(cè)視圖都是腰長為4的等腰直角三角形,正視圖為直角梯形.

(1)求此幾何體的體積V的大;
(2)求異面直線DE與AB所成角的余弦值;
(3)求二面角A-ED-B的正弦值.

查看答案和解析>>

同步練習冊答案