【題目】已知函數(shù)f(x)=4cos ωx·sina(ω>0)圖象上最高點(diǎn)的縱坐標(biāo)為2,且圖象上相鄰兩個(gè)最高點(diǎn)的距離為π.

(1)aω的值;

(2)求函數(shù)f(x)[0,π]上的單調(diào)遞減區(qū)間.

【答案】(1)a=-1. ω=1.(2).

【解析】

(1)先由三角的兩角和的正弦公式得到函數(shù)表達(dá)式,再由最大值為當(dāng)sin=1時(shí),f(x)取得最大值2+1+a=3+a,求出a即可,由圖像得到f(x)圖象上相鄰兩個(gè)最高點(diǎn)的距離為π,進(jìn)而得到周期和ω=1;(2)f(x)=sin,根據(jù)由+2kπ≤+2kπ,解出x的范圍得到單調(diào)遞減區(qū)間.

(1)f(x)=4cosωx·sin+a

=4cosωx·+a

=2sinωxcos ωx+2cos2ωx-1+1+a

sin2ωx+cos 2ωx+1+a

=2sin+1+a.

當(dāng)sin=1時(shí),f(x)取得最大值2+1+a=3+a.

又f(x)最高點(diǎn)的縱坐標(biāo)為2,∴3+a=2,即a=-1.

又f(x)圖象上相鄰兩個(gè)最高點(diǎn)的距離為π,

∴f(x)的最小正周期為T=π,

∴2ω==2,ω=1.

(2)由(1)得f(x)=2sin,

+2kπ≤2x++2kπ,k∈Z,

+kπ≤x≤+kπ,k∈Z.

令k=0,得≤x≤.

∴函數(shù)f(x)在[0,π]上的單調(diào)遞減區(qū)間為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位響應(yīng)黨中央精準(zhǔn)扶貧號(hào)召,對某村6戶貧困戶中的甲戶進(jìn)行定點(diǎn)幫扶,每年跟蹤調(diào)查統(tǒng)計(jì)一次,從201511日至201812月底統(tǒng)計(jì)數(shù)據(jù)如下(人均年純收入):

年份

2015

2016

2017

2018

年份代碼

1

2

3

4

收入(百元)

25

28

32

35

1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程,并估計(jì)甲戶在2019年能否脫貧;(國家規(guī)定2019年脫貧標(biāo)準(zhǔn):人均年純收入為3747元)

22019年初,根據(jù)扶貧辦的統(tǒng)計(jì)知,該村剩余5戶貧困戶中還有2戶沒有脫貧,現(xiàn)從這5戶中抽取2戶,求至少有一戶沒有脫貧的概率.

參考公式:,其中為數(shù),的平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)時(shí)都取得極值.

(1)求的值與函數(shù)的單調(diào)區(qū)間;

(2)若對,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)是定義域?yàn)?/span>R的奇函數(shù).

1)求實(shí)數(shù)k的值;

2)若,試判斷函數(shù)的單調(diào)性,并求不等式的解集;

3)若,設(shè),上的最小值為-1,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若方程有四個(gè)不等實(shí)根,時(shí),不等式恒成立,則實(shí)數(shù)的最小值為()

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,AB=2BC=2,E為CD中點(diǎn),以BE為折痕將△BEC折起,使C到C′的位置,且平面BEC′⊥平面ABED.

(1)求證:BC′⊥AE;

(2)求空間四邊形ABC′E的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[2019·龍泉驛區(qū)一中]交強(qiáng)險(xiǎn)是車主必須為機(jī)動(dòng)車購買的險(xiǎn)種,若普通6座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,且保費(fèi)與上一年車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如下表:

交強(qiáng)險(xiǎn)浮動(dòng)因素和費(fèi)率浮動(dòng)比率表

浮動(dòng)因素

浮動(dòng)比率

上一個(gè)年度未發(fā)生有責(zé)任道路交通事故

下浮

上兩個(gè)年度未發(fā)生有責(zé)任道路交通事故

下浮

上三個(gè)以及以上年度未發(fā)生有責(zé)任道路交通事故

下浮

上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故

上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故

上浮

上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故

上浮

某機(jī)構(gòu)為了研究某一品牌普通6座以下私家車的投保情況,隨機(jī)抽取了70輛車齡已滿三年該品牌同型號(hào)私家車的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:

類型

數(shù)量

10

13

7

20

14

6

(1)求一輛普通6座以下私家車在第四年續(xù)保時(shí)保費(fèi)高于基本保費(fèi)的頻率;

(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車輛記為事故車.假設(shè)購進(jìn)一輛事故車虧損6000元,一輛非事故車盈利10000元,且各種投保類型車的頻率與上述機(jī)構(gòu)調(diào)查的頻率一致,完成下列問題:

①若該銷售商店內(nèi)有7輛(車齡已滿三年)該品牌二手車,某顧客欲在店內(nèi)隨機(jī)挑選2輛,求這2輛車恰好有一輛為事故車的概率;

②若該銷售商一次性購進(jìn)70輛(車齡已滿三年)該品牌二手車,求一輛車盈利的平均值(結(jié)果用分?jǐn)?shù)表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線,閱讀如圖所示的程序框圖,若輸入的的值為,輸出的的值恰為直線軸上的截距,且.

1)求直線的交點(diǎn)坐標(biāo);

2)若直線過直線的交點(diǎn),且在軸上的截距是在軸上的截距的2倍,求的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)(x1)|xa|x2a(xR).

(1)a=﹣1,求方程f(x)1的解集;

(2) ,試判斷函數(shù)yf(x)R上的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊答案