已知兩條直線l1:y=a,l2:y=
18
2a+1
(a>0)
,l1與函數(shù)y=|log4x|的圖象從左至右相交于點(diǎn)A、B,l2與函數(shù)y=|log4x|的圖象從左至右相交于點(diǎn)C、D,記線段AC和BD在x軸上的投影長度分別為m、n,當(dāng)a變化時(shí),
n
m
的最小值為( 。
A、4
B、16
C、211
D、210
考點(diǎn):對(duì)數(shù)函數(shù)的圖像與性質(zhì)
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:設(shè)出A,B,C,D各點(diǎn)的橫坐標(biāo),并由題意求出來,計(jì)算m、n,求出
n
m
的最小值即可.
解答: 解:設(shè)A,B,C,D各點(diǎn)的橫坐標(biāo)分別為xA,xB,xC,xD,
則-log4xA=a,log4xB=a,-log4xC=
18
2a+1
,log4xD=
18
2a+1

∴xA=4-a,xB=4a,xC=4-
18
2a+1
,xD=4
18
2a+1
;
∴m=|xA-xC|,n=|xB-xD|,
n
m
=
4a-4
18
2a+1
4-a-4-
18
2a+1
=4a4
18
2a+1
=4a+
18
2a+1

又∵a>0,
∴a+
18
2a+1
=
1
2
(2a+1)+
18
2a+1
-
1
2
≥2
1
2
×18
-
1
2
=
11
2
;
當(dāng)且僅當(dāng)
1
2
(2a+1)=
18
2a+1
,即a=
5
2
時(shí)取“=”;
n
m
4
11
2
=211
故選:C.
點(diǎn)評(píng):本題考查了函數(shù)的圖象與性質(zhì)的應(yīng)用問題,也考查了基本不等式的應(yīng)用問題和一定的運(yùn)算能力,是綜合題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα、cosα是一元二次方程2x2+ax+b=0的兩個(gè)根,則點(diǎn)(a,b)的軌跡的普通方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲乙兩人玩猜數(shù)字游戲,先由甲在心中任想一個(gè)數(shù)字,記為a,再由乙猜甲剛才所想的數(shù)字,把乙猜的數(shù)字記為b,且a,b∈[-2,2],若|ab|≤1,則稱甲乙“心有靈犀”.現(xiàn)任意找兩人玩這個(gè)游戲,得出他們“心有靈犀”的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率e=2,右焦點(diǎn)F(c,0),方程ax2+bx-c=0的兩個(gè)根分別為x1,x2,則點(diǎn)P(x1,x2)在( 。
A、圓x2+y2=10內(nèi)
B、圓x2+y2=10上
C、圓x2+y2=10外
D、以上三種情況都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b,c>1,則logab+logbc+logca的最小值為( 。
A、3B、4C、6D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sin2x-sinx+2的最大值是(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1
x
+mx在[1,2]上是增函數(shù),則m的取值范圍為(  )
A、[
1
4
,1]
B、[1,4]
C、[1,+∞)
D、(-∞,-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

記Sk=1k+2k+3k+…+nk,當(dāng)k=1,2,3,…時(shí),觀察下列等式:
S1=
1
2
n2+
1
2
n,
S2=
1
3
n3+
1
2
n2+
1
6
n,
S3=
1
4
n4+
1
2
n3+
1
4
n2
S4=
1
5
n5+
1
2
n4+
1
3
n3-
1
30
n,
S5=An6+
1
2
n5+
5
12
n4+Bn2,….
可以推測(cè)A-B等于( 。
A、
2
3
B、
1
3
C、
1
4
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,直線l的方程為x-y+2=0,曲線C的參數(shù)方程為
x=
3
cosα
y=sinα
(α為參數(shù)).
(1)已知在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為(2,
π
2
),判斷點(diǎn)P與直線l的位置關(guān)系;
(2)設(shè)點(diǎn)Q是曲線C上的一個(gè)動(dòng)點(diǎn),求它到直線l的距離的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案