【題目】已知函數(shù), .
(1)若對(duì)于任意的, 恒成立,求實(shí)數(shù)的取值范圍;
(2)若,設(shè)函數(shù)在區(qū)間上的最大值、最小值分別為、,記,求的最小值.
【答案】(1) ;(2) 的最小值為.
【解析】試題分析:(1)由變形得,構(gòu)造函數(shù),求導(dǎo),根據(jù)單調(diào)性求出最大值,所以, ;(2),求出,對(duì)實(shí)數(shù)分情況討論,得出在(1,2)上的單調(diào)性,求出最大值、最小值,再求出的最小值。
試題解析:
(1)因?yàn)?/span>對(duì)任意的恒成立,
所以.
令, ,則.
令,則.
當(dāng)時(shí), , 在區(qū)間上單調(diào)遞增;
當(dāng)時(shí), , 在區(qū)間上單調(diào)遞減.
所以,
所以,即,
所以實(shí)數(shù)的取值范圍為.
(2)因?yàn)?/span>,
所以, .
所以.
令,則或.
①若,
當(dāng)時(shí), , 在區(qū)間上單調(diào)遞減;
當(dāng)時(shí), , 在區(qū)間上單調(diào)遞增.
又因?yàn)?/span>,
所以, ,
所以.
因?yàn)?/span>,
所以在區(qū)間上單調(diào)遞減,
所以當(dāng)時(shí), 的最小值為.
②若,
當(dāng)時(shí), , 在區(qū)間上單調(diào)遞減;
當(dāng)時(shí), , 在區(qū)間上單調(diào)遞增.
又因?yàn)?/span>,
所以, .
因?yàn)?/span>,
所以在區(qū)間上單調(diào)遞增.
所以當(dāng)時(shí), .
③若,
當(dāng)時(shí), , 在區(qū)間上單調(diào)遞減,
所以, .
所以,
所以在區(qū)間上的最小值為.
綜上所述, 的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】返鄉(xiāng)創(chuàng)業(yè)的大學(xué)生一直是人們比較關(guān)注的對(duì)象,他們從大學(xué)畢業(yè),沒(méi)有選擇經(jīng)濟(jì)發(fā)達(dá)的大城市,而是回到自己的家鄉(xiāng),為養(yǎng)育自己的家鄉(xiāng)貢獻(xiàn)自己的力量,在享有“國(guó)際花園城市”稱(chēng)號(hào)的溫江幸福田園,就有一個(gè)由大學(xué)畢業(yè)生創(chuàng)辦的農(nóng)家院“小時(shí)代”,其獨(dú)特的裝修風(fēng)格和經(jīng)營(yíng)模式,引來(lái)無(wú)數(shù)人的關(guān)注,帶來(lái)紅紅火火的現(xiàn)狀,給青年大學(xué)生們就業(yè)創(chuàng)業(yè)上很多新的啟示.在接受采訪中,該老板談起以下情況:初期投入為72萬(wàn)元,經(jīng)營(yíng)后每年的總收入為50萬(wàn)元,第n年需要付出房屋維護(hù)和工人工資等費(fèi)用是首項(xiàng)為12,公差為4的等差數(shù)列(單位:萬(wàn)元).
(1)求;
(2)該農(nóng)家樂(lè)第幾年開(kāi)始盈利?能盈利幾年?(即總收入減去成本及所有費(fèi)用之差為正值)
(3)該農(nóng)家樂(lè)經(jīng)營(yíng)多少年,其年平均獲利最大?年平均獲利的最大值是多少?(年平均獲利前年總獲利)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(t,1)為函數(shù)y=ax2+bx+4(a,b為常數(shù),且a≠0)與y=x圖象的交點(diǎn).
(1)求t;
(2)若函數(shù)y=ax2+bx+4的圖象與x軸只有一個(gè)交點(diǎn),求a,b;
(3)若1≤a≤2,設(shè)當(dāng)≤x≤2時(shí),函數(shù)y=ax2+bx+4的最大值為m,最小值為n,求m﹣n的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) (是自然對(duì)數(shù)的底數(shù))
(1)求證:
(2)若不等式在上恒成立,求正數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】目前某地區(qū)有100萬(wàn)人,經(jīng)過(guò)x年后為y萬(wàn)人,如果年平均增長(zhǎng)率是1.2%,請(qǐng)回答下列問(wèn)題:
(1)試推算出y關(guān)于x的函數(shù)關(guān)系式;
(2)計(jì)算10年后該地區(qū)的人口總數(shù)(精確到0.1萬(wàn)人);
(3)計(jì)算大約多少年后該地區(qū)的人口總數(shù)會(huì)達(dá)到120萬(wàn)(精確到1年).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)若函數(shù)f(x)=ax2+bx+3a+b是偶函數(shù),定義域?yàn)?/span>[a-1,2a],則a=________,b=________;
(2)已知函數(shù)f(x)=ax2+2x是奇函數(shù),則實(shí)數(shù)a=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a>0,b>0,函數(shù)f(x)=|x+a|+|2x-b|的最小值為1.
(1)證明:2a+b=2;
(2)若a+2b≥tab恒成立,求實(shí)數(shù)t的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列隨機(jī)事件:
①某射手射擊一次,可能命中環(huán),環(huán),環(huán),,環(huán);
②一個(gè)小組有男生人,女生人,從中任選人進(jìn)行活動(dòng)匯報(bào);
③一只使用中的燈泡壽命長(zhǎng)短;
④拋出一枚質(zhì)地均勻的硬幣,觀察其出現(xiàn)正面或反面的情況;
⑤中秋節(jié)前夕,某市有關(guān)部門(mén)調(diào)查轄區(qū)內(nèi)某品牌的月餅質(zhì)量,給該品牌月餅評(píng)“優(yōu)”或“差”.
這些事件中,屬于古典概型的是________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com