已知sinα=-
12
13
,且α為第三象限角,求cosα,tanα的值.
考點:同角三角函數(shù)基本關(guān)系的運用
專題:三角函數(shù)的求值
分析:由sinα的值及α為第三象限角,利用同角三角函數(shù)間基本關(guān)系求出cosα的值,進(jìn)而確定出tanα的值即可.
解答: 解:∵sinα=-
12
13
,且α為第三象限角,
∴cosα=-
1-sin2α
=-
5
13
,tanα=
sinα
cosα
=
12
5
點評:此題考查了同角三角函數(shù)基本關(guān)系的運用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=-xf′(x)的圖象如圖(其中f′(x)是函數(shù)f(x)的導(dǎo)函數(shù)),下面四個圖象中,y=f(x)的圖象可能是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3sin(2x-
π
6
)

(1)求f(x)的遞增區(qū)間;
(2)求f(x)取得最大值時的x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U={x|-1<x<9},A={x|1<x<a},若∁UA≠∅,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2-2x+4y-4=0,一條斜率等于1的直線l與圓C交于A,B兩點.
(1)求弦AB最長時直線l的方程;
(2)求△ABC面積最大時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U為R,已知A={x|1<x<7},B={x|x<3或x>5},求:
(1)A∪B;
(2)A∩B;   
(3)A∩(∁UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:
(Ⅰ)sin155°cos325°+cos205°sin215°         
(Ⅱ)
1+tan15°
1-tan15°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在五面體ABCDEF中,四邊形ABCD是矩形,DE⊥平面ABCD.
(1)求證:AB∥EF;
(2)求證:平面BCF⊥平面CDEF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,已知點P(0,
3
),曲線C的參數(shù)方程為
x=
3
cosφ
y=3sinφ
(φ為參數(shù)).以原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρ=
3
2cos(θ-
π
6
)

(Ⅰ)判斷點P與直線l的位置關(guān)系,說明理由;
(Ⅱ)設(shè)直線l與曲線C的兩個交點為A、B,求|PA|•|PB|的值.

查看答案和解析>>

同步練習(xí)冊答案