標(biāo)準(zhǔn)正態(tài)總體的函數(shù)為f(x)=
1
e -
x2
2
,x∈(-∞,+∞)
(1)證明f(x)是偶函數(shù);
(2)求f(x)的最大值;
(3)利用指數(shù)函數(shù)的性質(zhì)說明f(x)的增減性.
考點(diǎn):函數(shù)奇偶性的判斷,函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)利用定義法求得f(-x)=f(x)證明函數(shù)為偶函數(shù).
(2)利用復(fù)合函數(shù)的單調(diào)性求得函數(shù)的最大值.
(3)利用復(fù)合函數(shù)同增異減的原則求得函數(shù)的單調(diào)區(qū)間.
解答: 解:(1)∵f(-x)=
1
e
(-x)2
2
=f(x),
∴f(x)為偶函數(shù).
(2)當(dāng)x=0時,-
x2
2
有最大值
∴f(x)max=
1

(3)
t=-
x2
2
y=
1
e-t
,由復(fù)合函數(shù)的單調(diào)得,在區(qū)間(-∞,0)上函數(shù)f(x)單調(diào)增,在區(qū)間[0,+∞)上單調(diào)減.
點(diǎn)評:本題主要考查了函數(shù)的奇偶性的應(yīng)用,復(fù)合函數(shù)的單調(diào)性問題.應(yīng)熟練應(yīng)用同增異減的原則來判斷函數(shù)的單調(diào)性.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD為菱形,點(diǎn)F為側(cè)棱PC上一點(diǎn).
(1)若PF=FC,求證:PA∥平面BDF;
(2)若BF⊥PC,求證:平面BDF⊥平面PBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓T:
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0).
(Ⅰ)若橢圓T的離心率為
5
3
,過焦點(diǎn)且垂直于z軸的直線被橢圓截得弦長為
8
3

①求橢圓方程;
②過點(diǎn)P(2,1)的兩條直線分別與橢圓F交于點(diǎn)A,C和B,D,若AB∥CD,求直線AB的斜率;
(Ⅱ)設(shè)P(x0,y0)為橢圓T內(nèi)一定點(diǎn)(不在坐標(biāo)軸上),過點(diǎn)P的兩條直線分別與橢圓T交于點(diǎn)A,C和B,D,且AB∥CD,類比(Ⅰ)②直接寫出直線T的斜率.(不必證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為菱形,∠ABC=60°,又PA⊥底面ABCD,E為BC的中點(diǎn).
(1)求證:AD⊥PE;
(2)設(shè)F是PD的中點(diǎn),求證:CF∥平面PAE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1的一個焦點(diǎn)為F(2,0),且離心率為
6
3

(Ⅰ)求橢圓方程;
(Ⅱ)過點(diǎn)M(3,0)且斜率為k的直線與橢圓交于A,B兩點(diǎn),點(diǎn)A關(guān)于x軸的對稱點(diǎn)為C,求△MBC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)x>0時,求證:x3≥3x-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖1,在直角梯形ABCD中,已知AD∥BC,AD=AB=1,∠BAD=90°,∠BCD=45°,E為對角線BD中點(diǎn).現(xiàn)將△ABD沿BD折起到△PBD的位置,使平面PBD⊥平面BCD,如圖2.
(Ⅰ)求證直線PE⊥平面BCD;
(Ⅱ)求證平面PBC⊥平面PCD;
(Ⅲ)已知空間存在一點(diǎn)Q到點(diǎn)P,B,C,D的距離相等,寫出這個距離的值(不用說明理由).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=|x+1|+|x-5|,x∈R.
(1)求不等式f(x)<x+10的解集;
(2)如果關(guān)于x的不等式f(x)≥a-(x-2)2在R上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若指數(shù)函數(shù)y=ax的圖象與直線y=x相切,則a=
 

查看答案和解析>>

同步練習(xí)冊答案