已知函數(shù)f(x)=x2•ln|x|(x≠0).
(Ⅰ)求f(x)的最值;   
(Ⅱ)若關(guān)于x的方程f(x)=kx-1無實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.
考點(diǎn):導(dǎo)數(shù)在最大值、最小值問題中的應(yīng)用,函數(shù)的零點(diǎn)與方程根的關(guān)系
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)顯然該函數(shù)是偶函數(shù),所以只需研究當(dāng)x>0時(shí)的函數(shù)最值,對(duì)函數(shù)求導(dǎo),判斷導(dǎo)數(shù)在定義域內(nèi)的符號(hào)確定單調(diào)性;
(2)利用函數(shù)的導(dǎo)數(shù)研究單調(diào)性、極值、最值情況研究圖象,再結(jié)合圖象確定k的范圍.
解答: 解:( I )∵f(x)為偶函數(shù),∴我們先求其在(0,+∞)內(nèi)的最值.
求導(dǎo)得f′(x)=x(2lnx+1),令f′(x)=0⇒2lnx+1=0⇒x=e 
1
2
,
易知:x∈(0,e -
1
2
)時(shí),f′(x)<0⇒f(x)單調(diào)遞減;x∈(e -
1
2
,+∞)時(shí),f′(x)>0⇒f(x)單調(diào)遞增.
故f(x)在(0,+∞)上的最小值f(x)min=f(e -
1
2
)=-
1
2e

再由f(x)為偶函數(shù),其圖象關(guān)于y軸對(duì)稱即知:f(x)min=-
1
2e
為所求.
( II )由( I )知:f(x)的圖象大致如右圖所示:

由圖象(曲線為f(x)的圖象)知:當(dāng)求出直線y=kx-1
與f(x)的圖象相切時(shí),其斜率k的值后,便可求得該直線與f(x)的圖象無交點(diǎn),即
方程f(x)=kx-1無實(shí)數(shù)解時(shí),其斜率k的取值范圍.  我們先考慮x>0的情況.
設(shè)切點(diǎn)為(x0,y0),x0>0⇒k=x0(2ln x0+1)⇒切線方程為:y=x0(2ln x0+1)x+y0-x02(2ln x0+1),
因該切線與y=kx-1重合,故x02(2ln x0+1)=1⇒2x02ln x0=1-x02.此即2 f(x0)=1-x02. (※)
在同一坐標(biāo)系內(nèi),作出函數(shù)y=2f(x),x>0,與y=1-x2的圖象,可知它們的交點(diǎn)為(1,0).
故方程(※)的解為:x0=1⇒k=1;⇒x>0時(shí),k≥1,直線y=kx-1與f(x)的圖象有交點(diǎn)(即原方程有解).
再根據(jù)f(x)的圖象的對(duì)稱性易知:k≤-1時(shí),直線y=kx-1與f(x)的圖象也有交點(diǎn).
故-1<k<1時(shí),直線y=kx-1與f(x)的圖象無交點(diǎn),即方程f(x)=kx-1無實(shí)數(shù)解.
故所求的k的范圍是(-1,1).
點(diǎn)評(píng):本題充分考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、等性質(zhì),確定函數(shù)的圖象,再進(jìn)一步研究方程根的取值情況的常規(guī)思路.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
m
x
的圖象經(jīng)過點(diǎn)(1,5)
(1)求函數(shù)解析式;
(2)請(qǐng)用定義證明函數(shù)f(x)在區(qū)間(2,+∞)上是單調(diào)增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=acosx+b(a、b為常數(shù))的最大值是1,最小值是-7,那么acosx+bsinx的最大值是(  )
A、1B、4C、5D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合P={1,m,m2-3m-3},若3∈P且-1∉P,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

是命題p:函數(shù)f(x)=(a-
3
2
x是R上的減函數(shù),命題q:f(x)=x2-3x+3在[0,a]上的值域?yàn)閇1,3],若“p或q”為真命題,“p且q”為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的三個(gè)內(nèi)角A,B,C對(duì)邊分別是a,b,c,若∠A=45°,a=2,b=
2

(1)求∠B的值;
(2)求邊c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x1,x2,…,x2010,x2011的方差為3,則3(x1-2),3(x2-2),…,3(x2010-2),3(x2011-2)的方差為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若將函數(shù)y=2sin(x+
π
4
)的圖象上各點(diǎn)的橫坐標(biāo)縮短為原來的
1
2
倍(縱坐標(biāo)不變),再向右平移
π
4
個(gè)單位,則所得圖象的一條對(duì)稱軸的方程為( �。�
A、x=-
π
8
B、x=-
π
4
C、x=
π
8
D、x=
π
4
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屾盯骞橀懠顒夋М闂佹悶鍔嶇换鍐Φ閸曨垰鍐€妞ゆ劦婢€缁墎绱撴担鎻掍壕婵犮垼娉涢鍕崲閸℃稒鐓忛柛顐g箖閸f椽鏌涢敐鍛础缂佽鲸甯¢幃鈺呮濞戞帗鐎伴梻浣告惈閻ジ宕伴弽顓犲祦闁硅揪绠戠粻娑㈡⒒閸喓鈯曟い鏂垮濮婄粯鎷呴崨濠傛殘婵烇絽娲﹀浠嬫晲閻愭潙绶為柟閭﹀劦閿曞倹鐓曢柡鍥ュ妼閻忕姵淇婇锝忚€块柡灞剧洴閳ワ箓骞嬪┑鍥╀壕缂傚倷绀侀鍛崲閹版澘鐓橀柟杈鹃檮閸婄兘鏌ょ喊鍗炲闁告柨鎲$换娑氣偓娑欋缚閻倕霉濠婂簼绨绘い鏇稻缁绘繂顫濋鐔割仧闂備胶绮灙閻忓繑鐟╁畷鎰版倷閻戞ǚ鎷洪柣搴℃贡婵敻濡撮崘鈺€绻嗛柣鎰綑濞搭喗顨ラ悙宸剱妞わ妇澧楅幆鏃堟晲閸ラ搴婇梻鍌欒兌缁垶宕濋敃鍌氱婵炲棙鎸哥粈澶愭煏閸繃顥撳ù婊勭矋閵囧嫰骞樼捄鐩掋垽鏌涘Ο铏规憼妞ゃ劊鍎甸幃娆撳箵閹烘挻顔勯梺鍓х帛閻楃娀寮诲☉妯锋闁告鍋為悘鍫熺箾鐎电ǹ顎岄柛娆忓暙椤繘鎼归崷顓狅紲濠殿喗顨呭Λ娆撴偩閸洘鈷戠紓浣癸供濞堟棃鏌ㄩ弴銊ら偗闁绘侗鍠涚粻娑樷槈濞嗘垵濮搁柣搴$畭閸庡崬螞瀹€鍕婵炲樊浜濋埛鎴︽煕濞戞﹫鍔熺紒鐘虫崌閹顫濋悡搴$睄闂佽桨绀佺粔鐟邦嚕椤曗偓瀹曟帒饪伴崪鍐簥闂傚倷绀侀幖顐ゆ偖椤愶箑纾块柟鎯板Г閸嬧晜绻涘顔荤凹闁绘挻绋戦湁闁挎繂鎳忛幉鎼佸极閸惊鏃堟偐闂堟稐绮跺┑鐐叉▕閸欏啴濡存笟鈧浠嬵敇閻愰潧骞愰梻浣告啞閸旀垿宕濆澶嬪€堕柛顐犲劜閸婄敻鎮峰▎蹇擃仾缂佲偓閸愨斂浜滈柕濞垮劵闊剚顨ラ悙璇ц含鐎殿喕绮欓、姗€鎮欓棃娑樼闂傚倷绀侀幉锟犲礉閹达箑绀夐幖娣妼绾惧綊鏌ㄩ悤鍌涘

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列圖象不能作為函數(shù)圖象的是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屻倝宕妷锔芥瘎婵炲濮甸懝楣冨煘閹寸偛绠犻梺绋匡攻椤ㄥ棝骞堥妸褉鍋撻棃娑欏暈鐎规洖寮堕幈銊ヮ渻鐠囪弓澹曢梻浣虹帛娓氭宕板☉姘变笉婵炴垶菤濡插牊绻涢崱妯哄妞ゅ繒鍠栧缁樻媴閼恒儳銆婇梺闈╃秶缁犳捇鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙绀冩い鏇嗗洤鐓橀柟杈鹃檮閸嬫劙鏌涘▎蹇fЧ闁诡喗鐟х槐鎾存媴閸濆嫷鈧矂鏌涢妸銉у煟鐎殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹