相關(guān)習(xí)題
 0  235398  235406  235412  235416  235422  235424  235428  235434  235436  235442  235448  235452  235454  235458  235464  235466  235472  235476  235478  235482  235484  235488  235490  235492  235493  235494  235496  235497  235498  235500  235502  235506  235508  235512  235514  235518  235524  235526  235532  235536  235538  235542  235548  235554  235556  235562  235566  235568  235574  235578  235584  235592  266669 

科目: 來(lái)源: 題型:填空題

7.函數(shù)$f(x)=\frac{x^2}{2}-klnx,k>0$的單調(diào)增區(qū)間為$({\sqrt{k},+∞})$.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

6.設(shè)x,y滿足約束條件$\left\{{\begin{array}{l}{x,y≥0}\\{x-y≥-1}\\{x+y≤3}\end{array}}\right.$,則z=x-2y的最大值為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

5.已知直線2ax+by-2=0(a>0,b>0)過(guò)點(diǎn)(1,2),則$\frac{1}{a}+\frac{1}$的最小值是( 。
A.2B.3C.4D.1

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

4.如圖,在以A,B,C,D,E,F(xiàn)為頂點(diǎn)的五面體中,面ABEF為正方形,AF=2FD,∠AFD=90°,且二面角D-AF-E與二面角C-BE-F都是60°.
(1)證明平面ABEF⊥平面EFDC;
(2)證明:CD∥EF
(3)求二面角E-BC-A的余弦值.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

3.已知點(diǎn)A(-$\sqrt{2}$,0),B($\sqrt{2}$,0),P是平面內(nèi)的一個(gè)動(dòng)點(diǎn),直線PA與PB交于點(diǎn)P,且它們的斜率之積是-$\frac{1}{2}$.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)設(shè)直線l:y=kx+1與曲線C交于M、N兩點(diǎn),當(dāng)線段MN的中點(diǎn)在直線x+2y=0上時(shí),求直線l的方程.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

2.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)的和為Sn,且滿足:$2{S_n}={a_n}^2+a{\;}_n$,(n∈N+
(1)求a1,a2,a3的值
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

1.已知數(shù)列{an}滿足:${log_3}a{\;}_n+1={log_3}{a_{n+1}},({n∈{N^+}})$,且a2+a4+a6=9,則${log_{\frac{1}{3}}}({a_5}+{a_7}+{a_9})$的值為-5.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

20.已知數(shù)列{an}:a1=1,${a_{n+1}}=2{a_n}+3,({n∈{N^+}})$,則an=( 。
A.2n+1-3B.2n-1C.2n+1D.2n+2-7

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

19.已知向量$\overrightarrow{a}$=(2,1,4),$\overrightarrow$=(1,0,2),且$\overrightarrow{a}$+$\overrightarrow$與k$\overrightarrow{a}$-$\overrightarrow$互相垂直,則k的值是( 。
A.1B.$\frac{1}{5}$C.$\frac{3}{5}$D.$\frac{15}{31}$

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

18.等差數(shù)列{an}前n項(xiàng)和為Sn,公差d=-2,S3=21,則a1的值為( 。
A.10B.9C.6D.5

查看答案和解析>>

同步練習(xí)冊(cè)答案