科目: 來源: 題型:
【題目】某公司共有職工1500人,其中男職工1050人,女職工450人.為調(diào)查該公司職工每周平均上網(wǎng)的時間,采用分層抽樣的方法,收集了300名職工每周平均上網(wǎng)時間的樣本數(shù)據(jù)(單位:小時)
男職工 | 女職工 | 總計 | |
每周平均上網(wǎng)時間不超過4個小時 | |||
每周平均上網(wǎng)時間超過4個小時 | 70 | ||
總計 | 300 |
(Ⅰ)應(yīng)收集多少名女職工樣本數(shù)據(jù)?
(Ⅱ)根據(jù)這300個樣本數(shù)據(jù),得到職工每周平均上網(wǎng)時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為:,,,,,.試估計該公司職工每周平均上網(wǎng)時間超過4小時的概率是多少?
(Ⅲ)在樣本數(shù)據(jù)中,有70名女職工的每周平均上網(wǎng)時間超過4個小時.請將每周平均上網(wǎng)時間與性別的列聯(lián)表補充完整,并判斷是否有95%的把握認為“該公司職工的每周平均上網(wǎng)時間與性別有關(guān)”
查看答案和解析>>
科目: 來源: 題型:
【題目】下面推理過程中使用了類比推理方法,其中推理正確的是( )
A. 平面內(nèi)的三條直線,若,則.類比推出:空間中的三條直線,若,則
B. 平面內(nèi)的三條直線,若,則.類比推出:空間中的三條向量,若,則
C. 在平面內(nèi),若兩個正三角形的邊長的比為,則它們的面積比為.類比推出:在空間中,若兩個正四面體的棱長的比為,則它們的體積比為
D. 若,則復(fù)數(shù).類比推理:“若,則”
查看答案和解析>>
科目: 來源: 題型:
【題目】2018年11月5日上午,首屆中國國際進口博覽會拉開大幕,這是中國也是世界上首次以進口為主題的國家級博覽會,本次博覽會包括企業(yè)產(chǎn)品展、國家貿(mào)易投資展,其中企業(yè)產(chǎn)品展分為7個展區(qū),每個展區(qū)統(tǒng)計了備受關(guān)注百分比,如下表:
展區(qū)類型 | 智能及高端裝備 | 消費電子及家電 | 汽車 | 服裝服飾及日用消費品 | 食品及農(nóng)產(chǎn)品 | 醫(yī)療器械及醫(yī)藥保健 | 服務(wù)貿(mào)易 |
展區(qū)的企業(yè)數(shù)家 | 400 | 60 | 70 | 650 | 1670 | 300 | 450 |
備受關(guān)注百分比 |
備受關(guān)注百分比指:一個展區(qū)中受到所有相關(guān)人士關(guān)注簡稱備受關(guān)注的企業(yè)數(shù)與該展區(qū)的企業(yè)數(shù)的比值.
(1)從企業(yè)產(chǎn)品展7個展區(qū)的企業(yè)中隨機選取1家,求這家企業(yè)是選自“智能及高端裝備”展區(qū)備受關(guān)注的企業(yè)的概率;
(2)某電視臺采用分層抽樣的方法,在“消費電子及家電”展區(qū)備受關(guān)注的企業(yè)和“醫(yī)療器械及醫(yī)藥保健”展區(qū)備受關(guān)注的企業(yè)中抽取6家進行了采訪,若從受訪企業(yè)中隨機抽取2家進行產(chǎn)品展示,求恰有1家來自于“醫(yī)療器械及醫(yī)藥保健”展區(qū)的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】空氣質(zhì)量指數(shù)(,簡稱)是定量描述空氣質(zhì)量狀況的指數(shù),空氣質(zhì)量按照大小分為六級:為優(yōu);為良;為輕度污染;為中度污染;為重度污染;為嚴重污染.一環(huán)保人士記錄去年某地某月10天的的莖葉圖如下.
(1)利用該樣本估計該地本月空氣質(zhì)量優(yōu)良()的天數(shù);(按這個月總共30天計算)
(2)將頻率視為概率,從本月中隨機抽取3天,記空氣質(zhì)量優(yōu)良的天數(shù)為,求的概率分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,正六邊形的中心為,對、、、、、、這七個點中的任意兩點,以其中一點為起點、另一點為終點作向量.任取其中兩個向量,以它們的數(shù)量積的絕對值作為隨機變量.試求的概率分布列及其數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知a<2,函數(shù)f(x)=(x2+ax+a)ex.
(1)當(dāng)a=1時,求f(x)的單調(diào)遞增區(qū)間;
(2)若f(x)的極大值是6e-2,求a的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】(本小題滿分14分)已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)證明:當(dāng)時,;
(Ⅲ)確定實數(shù)的所有可能取值,使得存在,當(dāng)時,恒有.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com