科目: 來源: 題型:
【題目】已知數(shù)列中,函數(shù).
(1)若正項數(shù)列滿足,試求出, , ,由此歸納出通項,并加以證明;
(2)若正項數(shù)列滿足(n∈N*),數(shù)列的前項和為Tn,且,求證: .
查看答案和解析>>
科目: 來源: 題型:
【題目】圖一是美麗的“勾股樹”,它是一個直角三角形分別以它的每一邊向外作正方形而得到.圖二是第1代“勾股樹”,重復(fù)圖二的作法,得到圖三為第2代“勾股樹”,以此類推,已知最大的正方形面積為1,則第代“勾股樹”所有正方形的個數(shù)與面積的和分別為( )
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)是定義在R上的偶函數(shù),且當(dāng)時,().
(1)當(dāng)時,求的表達(dá)式:
(2)求在區(qū)間的最大值的表達(dá)式;
(3)當(dāng)時,若關(guān)于x的方程(a,)恰有10個不同實數(shù)解,求a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】在極坐標(biāo)系中,曲線的方程為,以極點為原點,極軸所在直線為軸建立直角坐標(biāo),直線的參數(shù)方程為(為參數(shù)),與交于,兩點.
(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;
(2)設(shè)點;若、、成等比數(shù)列,求的值
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐PABCD中,PA⊥底面ABCD,AD∥BC,AB=AC=AD=3,PA=BC=4.
(1)求異面直線PB與CD所成角的余弦值;
(2)求平面PAD與平面PBC所成銳二面角的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著改革開放的不斷深入,祖國不斷富強,人民的生活水平逐步提高,為了進(jìn)一步改善民生,2019年1月1日起我國實施了個人所得稅的新政策,其政策的主要內(nèi)容包括:(1)個稅起征點為5000元;(2)每月應(yīng)納稅所得額(含稅)收入個稅起征點專項附加扣除;(3)專項附加扣除包括①贍養(yǎng)老人費用②子女教育費用③繼續(xù)教育費用④大病醫(yī)療費用等.其中前兩項的扣除標(biāo)準(zhǔn)為:①贍養(yǎng)老人費用:每月扣除2000元②子女教育費用:每個子女每月扣除1000元.新個稅政策的稅率表部分內(nèi)容如下:
級數(shù) | 一級 | 二級 | 三級 | 四級 | |
每月應(yīng)納稅所得額(含稅) | 不超過3000元的部分 | 超過3000元至12000元的部分 | 超過12000元至25000元的部分 | 超過25000元至35000元的部分 | |
稅率 | 3 | 10 | 20 | 25 |
(1)現(xiàn)有李某月收入29600元,膝下有一名子女,需要贍養(yǎng)老人,除此之外,無其它專項附加扣除.請問李某月應(yīng)繳納的個稅金額為多少?
(2)為研究月薪為20000元的群體的納稅情況,現(xiàn)收集了某城市500名的公司白領(lǐng)的相關(guān)資料,通過整理資料可知,有一個孩子的有400人,沒有孩子的有100人,有一個孩子的人中有300人需要贍養(yǎng)老人,沒有孩子的人中有50人需要贍養(yǎng)老人,并且他們均不符合其它專項附加扣除(受統(tǒng)計的500人中,任何兩人均不在一個家庭).若他們的月收入均為20000元,依據(jù)樣本估計總體的思想,試估計在新個稅政策下這類人群繳納個稅金額的分布列與期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】現(xiàn)有一款智能學(xué)習(xí)APP,學(xué)習(xí)內(nèi)容包含文章學(xué)習(xí)和視頻學(xué)習(xí)兩類,且這兩類學(xué)習(xí)互不影響,已知該APP積分規(guī)則如下:每閱讀一篇文章積1分,每日上限積5分;觀看視頻累計3分鐘積2分,每日上限積6分,經(jīng)過抽樣統(tǒng)計發(fā)現(xiàn),文章學(xué)習(xí)積分的概率分布表如表1所示,視頻學(xué)習(xí)積分的概率分布表如表2所示.
表1
文章學(xué)習(xí)積分 | 1 | 2 | 3 | 4 | 5 |
概率 |
表2
視頻學(xué)習(xí)積分 | 2 | 4 | 6 |
概率 |
(1)現(xiàn)隨機(jī)抽取1人了解學(xué)習(xí)情況,求其每日學(xué)習(xí)積分不低于9分的概率;
(2)現(xiàn)隨機(jī)抽取3人了解學(xué)習(xí)情況,設(shè)積分不低于9分的人數(shù)為,求的概率分布及數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知曲線的極坐標(biāo)方程是,以極點為原點,以極軸為軸的正半軸,取相同的單位長度,建立平面直角坐標(biāo)系,直線的參數(shù)方程為 .
(1)寫出直線的普通方程與曲線的直角坐標(biāo)方程;
(2)設(shè)曲線經(jīng)過伸縮變換得到曲線,曲線上任一點為,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com