如圖,為估計(jì)池塘岸邊A、B兩點(diǎn)的距離,小方在池塘的一側(cè)選取一點(diǎn)O,測(cè)得OA=15米,OB=10米,A、B間的距離不可能是( )
A.5米 B.10米 C.15米 D.20米
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
下列各條件中,不能作出惟一三角形的是( )
A.已知兩邊和夾角 B.已知兩角和夾邊
C.已知兩邊和其中一邊的對(duì)角 D.已知三邊
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
材料閱讀:
在小學(xué),我們了解到正方形的每個(gè)角都是90°,每條邊都相等;本學(xué)期,我們通過折紙得到定理:直角三角形的斜邊上的中線等于斜邊的一半;同時(shí)探討得知,在直角三角形中,30°的角所對(duì)的直角邊是斜邊的一半.
(1)如圖1,在等邊三角形△ABC內(nèi)有一點(diǎn)P,且PA=2,PB=,PC=1.求∠BPC的度數(shù)和等邊△ABC的邊長.
聰聰同學(xué)的思路是:將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,畫出旋轉(zhuǎn)后的圖形(如圖2).
連接PP′.根據(jù)聰聰同學(xué)的思路,可以證明△BPP′為等邊三角形,又可以證明△ABP′≌△CBP,所以AP′=PC=1,根據(jù)勾股定理逆定理可證出△APP′為直角三角形,故此∠BPC=__________°;同時(shí),可以說明∠BPA=90°,在Rt△APB中,利用勾股定理,可以求出等邊△ABC的邊AB=__________.
(2)請(qǐng)你參考聰聰同學(xué)的思路,探究并解決下列問題:如圖3,在正方形ABCD內(nèi)有一點(diǎn)P,且PA=,BP=,PC=1.求∠BPC的度數(shù)和正方形ABCD的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知直線y=2x+(3﹣a)與x軸的交點(diǎn)在A(2,0)、B(3,0)之間(包括A、B兩點(diǎn)),則a的取值范圍是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
下列判定直角三角形全等的方法,錯(cuò)誤的是( )
A.兩條直角邊對(duì)應(yīng)相等 B.斜邊和一銳角對(duì)應(yīng)相等
C.斜邊和一直角邊對(duì)應(yīng)相等 D.兩銳角相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在△ABC中,∠C=90°,AD平分∠BAC,BC=12cm,BD=8cm,則點(diǎn)D到AB的距離為__________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
.如圖,已知EA∥DF,AE=DF,要使△AEC≌△DBF,則需要( )
A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com