.如圖,已知EA∥DF,AE=DF,要使△AEC≌△DBF,則需要( )
A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC
A【考點(diǎn)】全等三角形的判定.
【分析】根據(jù)EA∥DF,可得∠A=∠D,然后有AE=DF,AB=CD,可得AC=DB,繼而可用SAS判定△AEC≌△DBF.
【解答】解:∵EA∥DF,
∴∠A=∠D,
∵AB=CD,
∴AC=DB,
在△AEC和△DBF中,
∵,
∴△AEC≌△DBF(SAS).
故選A.
【點(diǎn)評(píng)】本題考查三角形全等的判定方法,判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對(duì)應(yīng)相等時(shí),角必須是兩邊的夾角.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,為估計(jì)池塘岸邊A、B兩點(diǎn)的距離,小方在池塘的一側(cè)選取一點(diǎn)O,測(cè)得OA=15米,OB=10米,A、B間的距離不可能是( )
A.5米 B.10米 C.15米 D.20米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在平面直角坐標(biāo)系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).
(1)求出△ABC的面積;
(2)在圖中作出△ABC關(guān)于y軸的對(duì)稱(chēng)圖形△A1B1C1;
(3)寫(xiě)出點(diǎn)A1,B1,C1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
把一塊直尺與一塊三角板如圖放置,若∠1=40°,則∠2的度數(shù)為( )
A.125° B.120° C.140° D.130°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在Rt直角△ABC中,∠B=45°,AB=AC,點(diǎn)D為BC中點(diǎn),直角∠MDN繞點(diǎn)D旋轉(zhuǎn),DM,DN分別與邊AB,AC交于E,F(xiàn)兩點(diǎn),下列結(jié)論:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF,其中正確結(jié)論是( )
A.①②④ B.②③④ C.①②③ D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點(diǎn)P是BC中點(diǎn),兩邊PE、PF分別交AB、AC于點(diǎn)E、F,當(dāng)∠EPF在△ABC內(nèi)繞頂點(diǎn)P旋轉(zhuǎn)時(shí)(點(diǎn)E不與A、B重合),給出以下四個(gè)結(jié)論:①AE=CF;②△EPF是等腰直角三角形;③2S四邊形AEPF=S△ABC;④BE+CF=EF.上述結(jié)論中始終正確的有( )
A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com