已知等腰三角形的一個(gè)內(nèi)角等于40°,則它的頂角是__________°.
40°或100°°.
【考點(diǎn)】等腰三角形的性質(zhì).
【專題】分類討論.
【分析】已知等腰三角形的一個(gè)內(nèi)角為40°,根據(jù)等腰三角形的性質(zhì)可分情況解答:當(dāng)40°是頂角或者40°是底角兩種情況.
【解答】解:此題要分情況考慮:
①40°是它的頂角;
②40°是它的底角,則頂角是180°﹣40°×2=100°.
所以這個(gè)等腰三角形的頂角為40°或100°.
故答案為:40°或100°.
【點(diǎn)評(píng)】本題考查了等腰三角形的性質(zhì)及三角形內(nèi)角和定理;若題目中沒有明確頂角或底角的度數(shù),做題時(shí)要注意分情況進(jìn)行討論,這是十分重要的,也是解答問題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
下列各條件中,不能作出惟一三角形的是( )
A.已知兩邊和夾角 B.已知兩角和夾邊
C.已知兩邊和其中一邊的對(duì)角 D.已知三邊
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
等腰三角形的周長(zhǎng)是16,一邊長(zhǎng)為4,則這個(gè)等腰三角形腰長(zhǎng)為( )
A.4 B.6 C.4或6 D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
勾股定理被譽(yù)為“幾何明珠”,在數(shù)學(xué)的發(fā)展歷程中占有舉足輕重的地位.如圖1是由邊長(zhǎng)相等的小正方形和直角三角形構(gòu)成的,可以用其面積關(guān)系驗(yàn)證勾股定理.圖2是由圖1放入長(zhǎng)方形內(nèi)得到的,∠BAC=90°,AB=3,AC=4,點(diǎn)D、E、F、G、H、I 都在長(zhǎng)方形KLMJ的邊上,則長(zhǎng)方形KLMJ的面積為( )
A.90 B.100 C.110 D.121
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
材料閱讀:
在小學(xué),我們了解到正方形的每個(gè)角都是90°,每條邊都相等;本學(xué)期,我們通過折紙得到定理:直角三角形的斜邊上的中線等于斜邊的一半;同時(shí)探討得知,在直角三角形中,30°的角所對(duì)的直角邊是斜邊的一半.
(1)如圖1,在等邊三角形△ABC內(nèi)有一點(diǎn)P,且PA=2,PB=,PC=1.求∠BPC的度數(shù)和等邊△ABC的邊長(zhǎng).
聰聰同學(xué)的思路是:將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,畫出旋轉(zhuǎn)后的圖形(如圖2).
連接PP′.根據(jù)聰聰同學(xué)的思路,可以證明△BPP′為等邊三角形,又可以證明△ABP′≌△CBP,所以AP′=PC=1,根據(jù)勾股定理逆定理可證出△APP′為直角三角形,故此∠BPC=__________°;同時(shí),可以說明∠BPA=90°,在Rt△APB中,利用勾股定理,可以求出等邊△ABC的邊AB=__________.
(2)請(qǐng)你參考聰聰同學(xué)的思路,探究并解決下列問題:如圖3,在正方形ABCD內(nèi)有一點(diǎn)P,且PA=,BP=,PC=1.求∠BPC的度數(shù)和正方形ABCD的邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知直線y=2x+(3﹣a)與x軸的交點(diǎn)在A(2,0)、B(3,0)之間(包括A、B兩點(diǎn)),則a的取值范圍是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
.如圖,已知EA∥DF,AE=DF,要使△AEC≌△DBF,則需要( )
A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com