【題目】如圖,已知在△ABC中,AB=AC,BC=12厘米,點D為AB上一點且BD=8厘米,點P在線段BC上以2厘米/秒的速度由B點向C點運(yùn)動,設(shè)運(yùn)動時間為t,同時,點Q在線段CA上由C點向A點運(yùn)動.
(1)用含t的式子表示PC的長為_______________;
(2)若點Q的運(yùn)動速度與點p的運(yùn)動速度相等,當(dāng)t=2時,三角形BPD與三角形CQP是否全等,請說明理由;
(3)若點Q的運(yùn)動速度與點P的運(yùn)動速度不相等,請求出點Q的運(yùn)動速度是多少時,能夠使三角形BPD與三角形CQP全等?
【答案】(1)PC=12-2t;(2)ΔBPD≌ΔCQP理由見詳解;(3) cm/s
【解析】
(1)根據(jù)BC=12cm,點P在線段BC上以2厘米/秒的速度由B點向C點運(yùn)動,所以當(dāng)t秒時,運(yùn)動2t,因此PC=12-2t.(2)若點Q的運(yùn)動速度與點p的運(yùn)動速度相等,當(dāng)t=2s時,則CQ=4cm,BP=4cm,因為BC=12cm,所以PC=8cm,又因為BD=8cm,AB=AC,所以∠B=∠C,因此求出ΔBPD≌ΔCQP.(3) 已知∠B=∠C,BP≠CQ,根據(jù)ΔBPD≌ΔCQP得出 BP=PC,進(jìn)而算出時間t,再算出v即可.
(1)由題意得出:PC=12-2t
(2)若點Q的運(yùn)動速度與點p的運(yùn)動速度相等,當(dāng)t=2s時,則CQ=4cm,BP=4cm,∵ BC=12cm,∴PC=8cm,又∵BD=8cm,AB=AC,∴∠B=∠C,在ΔBPD和ΔCQP中,CQ=BP, ∠B=∠C,PC=BD,∴ΔBPD≌ΔCQP(SAS).
(3)若點Q的運(yùn)動速度與點P的運(yùn)動速度不相等,∵Vp≠VQ,∴BP≠CQ,又∵△BPD≌△CPQ,∠B=∠C,則BP=PC=6cm,CQ=BD=8cm,∴點P、點Q運(yùn)動的時間 t= =3s ,
∴VQ ===cm/s,即Q的速度為cm/s.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景:在正方形ABCD的外側(cè),作△ADE和△DCF,連結(jié)AF、BE.特例探究:如圖,若△ADE和△DCF均為等邊三角形,試判斷線段AF與BE的數(shù)量關(guān)系和位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將長方形紙片ABCD沿過點B的直線折疊,使點A落在BC邊上的點F處,折痕為BE(如圖1);再沿過點E的直線折疊,使點D落在BE上的點D′處,折痕為EG(如圖2);再展平紙片(如圖3),則圖3中∠α的大小為()
A.30°B.25.5°C.20°D.22.5°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△DEF中,AB∥DE,點A,F,C,D在同一直線上,AF=CD,∠AFE=∠BCD.
試說明:
(1)△ABC≌△DEF;
(2)BF∥EC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)(-)2 017×161 008;
(2)(8a6b3)2÷(-2a2b);
(3)因式分解:a2b-b3
(4)因式分解:﹣3x3+6x2y﹣3xy2
(5)解方程:
(6)解方程: =0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的邊BC與x軸重合,B、C對應(yīng)的橫坐標(biāo)是一元二次方程的兩根,E是AD與y軸的交點,其縱坐標(biāo)為2,過A、C作直線交y軸于F.
(1)求直線AF的解析式.
(2)M是BC上一點,其橫坐標(biāo)為2,在坐標(biāo)軸上,你能否找到一點P,使?若能,求出點P的坐標(biāo);若不能,請說明理由.
(3)點Q是x軸上一動點,連接AQ,Q在運(yùn)動過程中AQ+是否存在最小值?若存在,請求出AQ+最小值及Q的坐標(biāo);若不存在,請說明理由.
備用圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD⊥AB,BE⊥AC,垂足分別為點D,點E,BE、CD相交于點O.∠1=∠2,則圖中全等三角形共有( )
A. 4對B. 3對C. 2對D. 5對
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com