科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2+mx+n與x軸正半軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn) C.
(1)若△OBC是等腰直角三角形,且其腰長為3,求拋物線的解析式;
(2)在(1)的條件下,點(diǎn)P為拋物線對(duì)稱軸上的一點(diǎn),則PA+PC的最小值為 .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,園林小組的同學(xué)用一段長16米的籬笆圍成一個(gè)一邊靠墻的矩形菜園ABCD,墻的長度為9米,設(shè)AB的長為x米,BC的長為y米.
(1)①寫出y與x的函數(shù)關(guān)系是: ;
②自變量x的取值范圍是 ;
(2)園林小組的同學(xué)計(jì)劃使矩形菜園的面積為30平方米,試求此時(shí)邊AB的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB是⊙0的直徑,點(diǎn)C在⊙0上,D是中點(diǎn),若∠BAC=70°,求∠C.
下面是小雯的解法,請(qǐng)幫他補(bǔ)充完整:
解:在⊙0中,
∵D是的中點(diǎn)
∴BD=CD.
∴∠1=∠2( )(填推理的依據(jù)).
∵∠BAC=70°,
∴∠2=35°.
∵AB是⊙0的直徑,
∴∠ADB=90°( )(填推理的依據(jù)).
∴∠B=90°-∠2=55°.
∵A、B、C、D四個(gè)點(diǎn)都在⊙0上,
∴∠C+∠B=180°( )(填推理的依據(jù)).
∴∠C=180°-∠B= (填計(jì)算結(jié)果).
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線y=x2+bx+c的對(duì)稱軸為x=1,且其頂點(diǎn)在直線y=﹣2x﹣2上.
(1)求拋物線的頂點(diǎn)坐標(biāo);
(2)求拋物線的解析式;
(3)在給定的平面直角坐標(biāo)系中畫出這個(gè)二次函數(shù)的圖象;
(4)當(dāng)﹣1<x<4時(shí),直接寫出y的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1所示,E為矩形ABCD的邊AD上一點(diǎn),動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)B出發(fā),點(diǎn)P沿折線BE﹣ED﹣DC運(yùn)動(dòng)到點(diǎn)C時(shí)停止,點(diǎn)Q沿BC運(yùn)動(dòng)到點(diǎn)C時(shí)停止,它們運(yùn)動(dòng)的速度都是1cm/秒,設(shè)P、Q同時(shí)出發(fā)t秒時(shí),△BPQ的面積為ycm2,已知y與t的函數(shù)關(guān)系圖象如圖2所示,請(qǐng)回答:
(1)線段BC的長為 cm.
(2)當(dāng)運(yùn)動(dòng)時(shí)間t=2.5秒時(shí),P、Q之間的距離是 cm.
查看答案和解析>>
科目: 來源: 題型:
【題目】下表是二次函數(shù)y=ax2+bx+c的x,y的部分對(duì)應(yīng)值:
x | … | 0 | 1 | 2 | … | ||||
y | … | ﹣1 | m | ﹣1 | n | … |
則對(duì)于該函數(shù)的性質(zhì)的判斷:①該二次函數(shù)有最大值;②不等式y>﹣1的解集是x<0或x>2;③方程ax2+bx+c=0的兩個(gè)實(shí)數(shù)根分別位于﹣<x<0和2<x<之間;④當(dāng)x>0時(shí),函數(shù)值y隨x的增大而增大;其中正確的是( 。
A.②③B.②④C.①③D.③④
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A(﹣1,0)和C(0,3).(1)求拋物線的解析式;(2)在拋物線的對(duì)稱軸上,是否存在點(diǎn)P,使PA+PC的值最小?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo),如果不存在,請(qǐng)說明理由;(3)設(shè)點(diǎn)M在拋物線的對(duì)稱軸上,當(dāng)△MAC是直角三角形時(shí),求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀以下材料,并按要求完成相應(yīng)地任務(wù):
萊昂哈德·歐拉(Leonhard Euler)是瑞士數(shù)學(xué)家,在數(shù)學(xué)上經(jīng)常見到以他的名字命名的重要常數(shù),公式和定理,下面是歐拉發(fā)現(xiàn)的一個(gè)定理:在△ABC中,R和r分別為外接圓和內(nèi)切圓的半徑,O和I分別為其外心和內(nèi)心,則.
如圖1,⊙O和⊙I分別是△ABC的外接圓和內(nèi)切圓,⊙I與AB相切分于點(diǎn)F,設(shè)⊙O的半徑為R,⊙I的半徑為r,外心O(三角形三邊垂直平分線的交點(diǎn))與內(nèi)心I(三角形三條角平分線的交點(diǎn))之間的距離OI=d,則有d2=R2﹣2Rr.
下面是該定理的證明過程(部分):
延長AI交⊙O于點(diǎn)D,過點(diǎn)I作⊙O的直徑MN,連接DM,AN.
∵∠D=∠N,∠DMI=∠NAI(同弧所對(duì)的圓周角相等),
∴△MDI∽△ANI,
∴,
∴①,
如圖2,在圖1(隱去MD,AN)的基礎(chǔ)上作⊙O的直徑DE,連接BE,BD,BI,IF,
∵DE是⊙O的直徑,∴∠DBE=90°,
∵⊙I與AB相切于點(diǎn)F,∴∠AFI=90°,
∴∠DBE=∠IFA,
∵∠BAD=∠E(同弧所對(duì)圓周角相等),
∴△AIF∽△EDB,
∴,∴②,
任務(wù):(1)觀察發(fā)現(xiàn):, (用含R,d的代數(shù)式表示);
(2)請(qǐng)判斷BD和ID的數(shù)量關(guān)系,并說明理由;
(3)請(qǐng)觀察式子①和式子②,并利用任務(wù)(1),(2)的結(jié)論,按照上面的證明思路,完成該定理證明的剩余部分;
(4)應(yīng)用:若△ABC的外接圓的半徑為5cm,內(nèi)切圓的半徑為2cm,則△ABC的外心與內(nèi)心之間的距離為 cm.
查看答案和解析>>
科目: 來源: 題型:
【題目】一個(gè)盒中有4個(gè)完全相同的小球,把它們分別標(biāo)號(hào)為1,2,3,4,隨機(jī)摸取一個(gè)小球然后放回,再隨機(jī)摸出一個(gè)小球.
(Ⅰ)請(qǐng)用列表法(或畫樹狀圖法)列出所有可能的結(jié)果;
(Ⅱ)求兩次取出的小球標(biāo)號(hào)相同的概率;
(Ⅲ)求兩次取出的小球標(biāo)號(hào)的和大于6的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直線:()與,軸分別交于,兩點(diǎn),以為邊在直線的上方作正方形,反比例函數(shù)和的圖象分別過點(diǎn)和點(diǎn).若,則的值為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com