設(shè)橢圓+=1(a>b>0)的左焦點(diǎn)為F,離心率為,過(guò)點(diǎn)F且與x軸垂直的直線被橢圓截得的線段長(zhǎng)為.
(1)求橢圓的方程;
(2)設(shè)A,B分別為橢圓的左、右頂點(diǎn),過(guò)點(diǎn)F且斜率為k的直線與橢圓交于C,D兩點(diǎn).若=8,求k的值.
解析:(1)設(shè)F(-c,0),由=,知a=c.過(guò)點(diǎn)F且與x軸垂直的直線為x=-c,代入橢圓方程有,解得y=±,于是=,解得b=,又a2-c2=b2,從而a=,c=1,所以橢圓的方程為+=1.
(2)設(shè)點(diǎn)C(x1,y1),D(x2,y2),由F(-1,0)得直線CD的方程為y=k(x+1),由方程組消去y,整理得(2+3k2)x2+6k2x+3k2-6=0.
由根與系數(shù)的關(guān)系可得x1+x2=-,x1x2=,
因?yàn)?i>A(-,0),B(,0),所以
=(x1+,y1)·(-x2,-y2)+(x2+,y2)·(-x1,-y1)
=6-2x1x2-2y1y2=6-2x1x2-2k2(x1+1)(x2+1)
=6-(2+2k2)x1x2-2k2(x1+x2)-2k2
=6+.
由已知得6+=8,解得k=±.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)f(x)=2cos.
(1)求f(x)的值域和最小正周期;
(2)若對(duì)任意x∈,使得m[f(x)+]+2=0恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
若函數(shù)y=ax+8與y=-x+b的圖象關(guān)于直線y=x對(duì)稱,則a+b=____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,點(diǎn)P是拋物線C:y=x2上橫坐標(biāo)大于零的一點(diǎn),直線l過(guò)點(diǎn)P并與拋物線C在點(diǎn)P處的切線垂直,直線l與拋物線C相交于另一點(diǎn)Q.
(1)當(dāng)點(diǎn)P的橫坐標(biāo)為2時(shí),求直線l的方程;
(2)若=0,求過(guò)點(diǎn)P,Q,O的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
以橢圓+=1的右焦點(diǎn)F為圓心,并過(guò)橢圓的短軸端點(diǎn)的圓的方程為_(kāi)___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知雙曲線C :-=1的焦距為10,點(diǎn)P(2,1)在C 的漸近線上,則C的方程為( )
A.-=1 B.-=1
C.-=1 D.-=1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知點(diǎn)M(-2,0),N(2,0),動(dòng)點(diǎn)P滿足條件|PM|-|PN|=2.記動(dòng)點(diǎn)P的軌跡為W.
(1)求W的方程;
(2)若A,B是W上的不同兩點(diǎn),O是坐標(biāo)原點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知以點(diǎn)C (t∈R,t≠0)為圓心的圓與x軸交于點(diǎn)O,A,與y軸交于點(diǎn)O,B,其中O為原點(diǎn).
(1)求證:△OAB的面積為定值;
(2)設(shè)直線y=-2x+4與圓C交于點(diǎn)M,N,若|OM|=|ON|,求圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知圓C的方程為x2+(y-4)2=4,點(diǎn)O是坐標(biāo)原點(diǎn).直線l:y=kx與圓C交于M,N兩點(diǎn).
(1)求k的取值范圍;
(2)設(shè)Q(m,n)是線段MN上的點(diǎn),且請(qǐng)將n表示為m的函數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com