在△ABC中,acosA=bcosB,則△ABC是(  )
A、等邊三角形
B、等腰直角三角形
C、等腰三角形或直角三角形
D、兩直角邊互不相等的直角三角形
考點(diǎn):正弦定理
專題:解三角形
分析:利用正弦定理將acosA=bcosB中等號(hào)兩邊的邊轉(zhuǎn)化為該邊所對(duì)角的正弦,化簡(jiǎn)整理即可.
解答: 解:在△ABC中,∵acosA=bcosB,
∴由正弦定理
a
sinA
=
b
sinB
=2R得:a=2RsinA,b=2RsinB,
∴sinAcosA=sinBcosB,
1
2
sin2A=
1
2
sin2B,
∴sin2A=sin2B,
∴2A=2B或2A=π-2B,
∴A=B或A+B=
π
2
,
∴△ABC為等腰或直角三角形,
故選C.
點(diǎn)評(píng):本題考查三角形的形狀判斷,著重考查正弦定理與二倍角的正弦的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,某人撥通了電話,準(zhǔn)備手機(jī)充值須如下操作( 。
A、1-5-1-1
B、1-5-1-4
C、1-5-2-1
D、1-5-2-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足a1=1,a2=2,an+2=(1+cos2
2
)an+sin2
2
,n∈N*,設(shè)bn=
a2n-1
a2n
,Sn=b1+b2+…+bn,則Sn+
n+2
2n
=( 。
A、0
B、2
C、1
D、1+
n+2
2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}前n項(xiàng)的和Sn=an2+bn(a≠0)是數(shù)列{an}成等差數(shù)列的( 。
A、充分非必要條件
B、必要非充分條件
C、充要條件
D、既非充分又非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求值:cos2
π
12
-sin2
π
12
=( 。
A、1
B、
1
2
C、
3
2
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
1
2
sinx-
3
2
cosx的最小正周期是( 。
A、
π
5
B、
π
2
C、π
D、2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)(-1,2)和(3,-3)在直線3x+y-a=0的同側(cè),則a取值范圍(  )
A、(-1,6)
B、(-6,1)
C、(-∞,-1)∪(6,+∞)
D、(-∞,-6)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若cosα+sinα=-
1
3
,則sin2α=( 。
A、-
1
3
B、
1
3
C、-
8
9
D、
8
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
3
+y2=1.如圖所示,斜率為k(k>0)且不過原點(diǎn)的直線l交橢圓C于A,B兩點(diǎn),線段AB的中點(diǎn)為E,射線OE交橢圓C于點(diǎn)G,交直線x=-3于點(diǎn)D(-3,m).
(Ⅰ)求證:mk=1
(Ⅱ)若|OG|2=|OD|•|OE|,
(i)求證:直線l過定點(diǎn);
(ii)試問點(diǎn)B,G能否關(guān)于x軸對(duì)稱?若能,求出此時(shí)△ABG的外接圓方程;若不能,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案