設(shè)變量x、y滿(mǎn)足
x+y≥1
x-y≥0
2x-y-2≥0
則目標(biāo)函數(shù)z=2x+y的最小值為(  )
A、6
B、4
C、2
D、
3
2
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專(zhuān)題:數(shù)形結(jié)合
分析:先根據(jù)條件畫(huà)出可行域,設(shè)z=2x+y,再利用幾何意義求最值,將最小值轉(zhuǎn)化為y軸上的截距最小,只需求出直線z=2x+y在y軸上截距的 最小值,從而得到z最小值即可.
解答: 解:在坐標(biāo)系中畫(huà)出可行域
由z=2x+y可得y=-2x+z,則z表示直線y=-2x+z在y軸上的截距,截距越小,z越小
平移直線2x+y=0經(jīng)過(guò)點(diǎn)B時(shí),z=2x+y最小
2x-y-2=0
x-y=0
可得B(2,0)
則目標(biāo)函數(shù)z=2x+y的最小值為z=2
故選:C
點(diǎn)評(píng):.借助于平面區(qū)域特性,用幾何方法處理代數(shù)問(wèn)題,體現(xiàn)了數(shù)形結(jié)合思想、化歸思想.線性規(guī)劃中的最優(yōu)解,通常是利用平移直線法確定.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=(1+x)2-2ln(1+x).
(Ⅰ)若對(duì)任意的x∈[0,1],不等式f(x)-m≤0都成立,求實(shí)數(shù)m的最小值;
(Ⅱ)若關(guān)于x的方程f(x)=x2+x+a在區(qū)間[0,2]上恰有兩個(gè)不等實(shí)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=
π
2
,AB=BC=2AD=4,E、F分別是AB、CD上的點(diǎn),EF∥BC,AE=2,G是BC的中點(diǎn).如圖,沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF.
(Ⅰ)求證:BD⊥EG;
(Ⅱ)求二面角D-BF-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={x|x2+x-6=0},集合N={x|ax+2=0,a∈R},且N⊆M,則實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an}為等比數(shù)列,a1=1,a4=64;數(shù)列{bn}的前n項(xiàng)和Sn滿(mǎn)足Sn=
3n2+n
2

(1)求{an}和{bn}的通項(xiàng)公式;
(2)設(shè)Tn=a1b1+a2b2+…+anbn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)=2x-
1
2x

(1)若f(x)=
3
2
,求x的值;
(2)若2tf(2t)+mf(t)≥0對(duì)于t∈[1,2]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某網(wǎng)站針對(duì)2014年中國(guó)好聲音歌手A,B,C三人進(jìn)行網(wǎng)上投票,結(jié)果如下
觀眾年齡支持A支持B支持C
20歲以下200400800
20歲以上(含20歲)100100400
(1)在所有參與該活動(dòng)的人中,用分層抽樣的方法抽取n人,其中有6人支持A,求n的值;
(2)若在參加活動(dòng)的20歲以下的人中,用分層抽樣的方法抽取7人作為一個(gè)總體,從這7人中任意抽取3人,用隨機(jī)變量X表示抽取出3人中支持B的人數(shù),寫(xiě)出X的分布列并計(jì)算E(X),D(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
xax
|x|
(0<a<1)的圖象的大致形狀是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)是定義在R上的奇函數(shù).當(dāng)x>0時(shí),f(x)=x•ex,則x<0時(shí),f(x)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案