相關(guān)習題
 0  115939  115947  115953  115957  115963  115965  115969  115975  115977  115983  115989  115993  115995  115999  116005  116007  116013  116017  116019  116023  116025  116029  116031  116033  116034  116035  116037  116038  116039  116041  116043  116047  116049  116053  116055  116059  116065  116067  116073  116077  116079  116083  116089  116095  116097  116103  116107  116109  116115  116119  116125  116133  266669 

科目: 來源:2013屆山西省晉商四校高二下學期聯(lián)考理科數(shù)學試卷(解析版) 題型:選擇題

已知函數(shù).當時,不等式恒成立,則實數(shù)的取值范圍是(  )

A.      B.       C.        D.

 

查看答案和解析>>

科目: 來源:2013屆山西省晉商四校高二下學期聯(lián)考理科數(shù)學試卷(解析版) 題型:填空題

的遞推關(guān)系式是           .

 

查看答案和解析>>

科目: 來源:2013屆山西省晉商四校高二下學期聯(lián)考理科數(shù)學試卷(解析版) 題型:填空題

已知函數(shù)_______.

 

查看答案和解析>>

科目: 來源:2013屆山西省晉商四校高二下學期聯(lián)考理科數(shù)學試卷(解析版) 題型:填空題

已知為一次函數(shù),且,則=______.

 

查看答案和解析>>

科目: 來源:2013屆山西省晉商四校高二下學期聯(lián)考理科數(shù)學試卷(解析版) 題型:填空題

設(shè)為兩個不重合的平面,是兩條不重合的直線,給出下列四個命題:

①若,,,,則;②若相交且不垂直,則不垂直;③若,則n⊥; ④若,則.其中所有真命題的序號是       

 

查看答案和解析>>

科目: 來源:2013屆山西省晉商四校高二下學期聯(lián)考理科數(shù)學試卷(解析版) 題型:解答題

求圓心在直線上,且經(jīng)過原點及點的圓的標準方程.

【解析】本試題主要考查的圓的方程的求解,利用圓心和半徑表示圓,首先設(shè)圓心C的坐標為(),然后利用,得到,從而圓心,半徑.可得原點 標準方程。

解:設(shè)圓心C的坐標為(),...........2分

,即

,解得........4分

所以圓心,半徑...........8分

故圓C的標準方程為:.......10分

 

查看答案和解析>>

科目: 來源:2013屆山西省晉商四校高二下學期聯(lián)考理科數(shù)學試卷(解析版) 題型:解答題

求由拋物線與直線所圍成圖形的面積.

【解析】首先利用已知函數(shù)和拋物線作圖,然后確定交點坐標,然后利用定積分表示出面積為,所以得到,由此得到結(jié)論為

解:設(shè)所求圖形面積為,則

=.即所求圖形面積為

 

查看答案和解析>>

科目: 來源:2013屆山西省晉商四校高二下學期聯(lián)考理科數(shù)學試卷(解析版) 題型:解答題

把函數(shù)的圖象按向量平移得到函數(shù)的圖象. 

(1)求函數(shù)的解析式; (2)若,證明:.

【解析】本試題主要考查了函數(shù) 平抑變換和運用函數(shù)思想證明不等式。第一問中,利用設(shè)上任意一點為(x,y)則平移前對應(yīng)點是(x+1,y-2)代入 ,便可以得到結(jié)論。第二問中,令,然后求導,利用最小值大于零得到。

(1)解:設(shè)上任意一點為(x,y)則平移前對應(yīng)點是(x+1,y-2)代入 得y-2=ln(x+1)-2即y=ln(x+1),所以.……4分

(2) 證明:令,……6分

……8分

,∴,∴上單調(diào)遞增.……10分

,即

 

查看答案和解析>>

科目: 來源:2013屆山西省晉商四校高二下學期聯(lián)考理科數(shù)學試卷(解析版) 題型:解答題

已知直三棱柱中, , , 的交點, 若.

(1)求的長;  (2)求點到平面的距離;

(3)求二面角的平面角的正弦值的大小.

【解析】本試題主要考查了距離和角的求解運用。第一問中,利用ACCA為正方形, AC=3

第二問中,利用面BBCC內(nèi)作CDBC, 則CD就是點C平面ABC的距離CD=,第三問中,利用三垂線定理作二面角的平面角,然后利用直角三角形求解得到其正弦值為

解法一: (1)連AC交AC于E, 易證ACCA為正方形, AC=3 ……………  5分

(2)在面BBCC內(nèi)作CDBC, 則CD就是點C平面ABC的距離CD= … 8分

(3) 易得AC面ACB, 過E作EHAB于H, 連HC, 則HCAB

CHE為二面角C-AB-C的平面角. ………  9分

sinCHE=二面角C-AB-C的平面角的正弦大小為 ……… 12分

解法二: (1)分別以直線CB、CC、CA為x、y為軸建立空間直角坐標系, 設(shè)|CA|=h, 則C(0, 0, 0), B(4, 0, 0), B(4, -3, 0), C(0, -3, 0), A(0, 0, h), A(0, -3, h), G(2, -, -) ………………………  3分

=(2, -, -), =(0, -3, -h(huán))  ……… 4分

·=0,  h=3

(2)設(shè)平面ABC得法向量=(a, b, c),則可求得=(3, 4, 0) (令a=3)

點A到平面ABC的距離為H=||=……… 8分

(3) 設(shè)平面ABC的法向量為=(x, y, z),則可求得=(0, 1, 1) (令z=1)

二面角C-AB-C的大小滿足cos== ………  11分

二面角C-AB-C的平面角的正弦大小為

 

查看答案和解析>>

科目: 來源:2013屆山西省晉商四校高二下學期聯(lián)考理科數(shù)學試卷(解析版) 題型:解答題

已知橢圓的長軸長為,焦點是,點到直線的距離為,過點且傾斜角為銳角的直線與橢圓交于A、B兩點,使得.

(1)求橢圓的標準方程;           (2)求直線l的方程.

【解析】(1)中利用點F1到直線x=-的距離為可知-.得到a2=4而c=,∴b2=a2-c2=1.

得到橢圓的方程。(2)中,利用,設(shè)出點A(x1,y1)、B(x2,y2).,借助于向量公式再利用 A、B在橢圓+y2=1上, 得到坐標的值,然后求解得到直線方程。

解:(1)∵F1到直線x=-的距離為,∴-.

∴a2=4而c=,∴b2=a2-c2=1.

∵橢圓的焦點在x軸上,∴所求橢圓的方程為+y2=1.……4分

(2)設(shè)A(x1,y1)、B(x2,y2).由第(1)問知

,

……6分

∵A、B在橢圓+y2=1上,

……10分

∴l(xiāng)的斜率為.

∴l(xiāng)的方程為y=(x-),即x-y-=0.

 

查看答案和解析>>

同步練習冊答案