相關(guān)習(xí)題
 0  212620  212628  212634  212638  212644  212646  212650  212656  212658  212664  212670  212674  212676  212680  212686  212688  212694  212698  212700  212704  212706  212710  212712  212714  212715  212716  212718  212719  212720  212722  212724  212728  212730  212734  212736  212740  212746  212748  212754  212758  212760  212764  212770  212776  212778  212784  212788  212790  212796  212800  212806  212814  266669 

科目: 來源: 題型:

已知函數(shù)f(x)=cos2ωx-sin2ωx+2
3
cosωxsinωx(ω>0),f(x)的兩條相鄰對(duì)稱軸間的距離大于等于
π
2

(Ⅰ)求ω的取值范圍;
(Ⅱ)在△ABC中,角A,B,C所對(duì)的邊依次為a,b,c,a=
3
,b+c=3,f(A)=1,當(dāng)ω=1時(shí),求△ABC的面積.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=ln(1+x)-x+
k
2
x2,(k>0,且k≠1).
(Ⅰ)當(dāng)k=2時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)求f(x)的單調(diào)減區(qū)間;
(Ⅲ)當(dāng)k=0時(shí),設(shè)f(x)在區(qū)間[0,n](n∈N*)上的最小值為bn,令an=ln(1+n)-bn,
求證:
a1
a2
+
a1a3
a2a4
+…+
a1a3a2n-1
a2a4..a2n
2an+1
-1,(n∈N*).

查看答案和解析>>

科目: 來源: 題型:

某度假區(qū)以2014年索契冬奧會(huì)為契機(jī),依山修建了高山滑雪場(chǎng).為了適應(yīng)不同人群的需要,從山上A處到山腳滑雪服務(wù)區(qū)P處修建了滑雪賽道A-C-P和滑雪練習(xí)道A-E-P(如圖).已知cos∠ACP=一
5
5
,cos∠APC=
4
5
,cos∠APE=
2
3
,公路AP長為10(單位:百米),滑道EP長為6(單位:百米).
(Ⅰ)求滑道CP的長度;
(Ⅱ)由于C,E處是事故的高發(fā)區(qū),為及時(shí)處理事故,度假區(qū)計(jì)劃在公路AP上找一處D,修建連接道
DC,DE,問DP多長時(shí),才能使連接道DC+DE最短,最短為多少百米?

查看答案和解析>>

科目: 來源: 題型:

某停車場(chǎng)臨時(shí)停車按時(shí)段收費(fèi),收費(fèi)標(biāo)準(zhǔn)為:每輛汽車一次停車不超過1小時(shí)收費(fèi)6元,超過1小時(shí)的部分每小時(shí)收費(fèi)8元(不足1小時(shí)按1小時(shí)計(jì)算).現(xiàn)有甲、乙兩人在該場(chǎng)地停車,兩人停車都不超過4小時(shí).
(1)若甲停車1小時(shí)以上且不超過2小時(shí)的概率為
1
3
,停車付費(fèi)多于14元的概率為
5
12
,求甲停車付費(fèi)6元的概率;
(2)若甲、乙兩人每人停車的時(shí)長在每個(gè)時(shí)段的可能性相同,求甲乙二人停車付費(fèi)之和為28元的概率.

查看答案和解析>>

科目: 來源: 題型:

已知f(x)=lnx,g(x)=af(x)+f′(x),
(1)求g(x)的單調(diào)區(qū)間;
(2)當(dāng)a=1時(shí),
    ①比較g(x)與g(
1
x
)
的大;
    ②是否存在x0>0,使得|g(x)-g(x0)|<
1
x
對(duì)任意x>0成立?若存在,求出x0的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目: 來源: 題型:

已知橢圓中心在原點(diǎn),焦點(diǎn)在x軸上,長軸長等于12,離心率為
1
3

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)在橢圓上任取一點(diǎn)P,過P點(diǎn)做y軸垂線段PQ,Q為垂足,當(dāng)P在橢圓上運(yùn)動(dòng)時(shí),求線段PQ的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目: 來源: 題型:

已知線段AB的端點(diǎn)B的坐標(biāo)是(1,2),端點(diǎn)A在圓(x+1)2+y2=4上運(yùn)動(dòng),點(diǎn)M是AB的中點(diǎn).
(1)若點(diǎn)M的軌跡為曲線C,求此曲線的方程;
(2)設(shè)直線l:x+y+3=0,求曲線C上的點(diǎn)到直線l距離的最大值和最小值.

查看答案和解析>>

科目: 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
,直線l:y=
3
(x-4)
關(guān)于直線l1:y=
b
a
x
對(duì)稱的直線l′與x軸平行.
(1)求雙曲線的離心率;
(2)若點(diǎn)M(4,0)到雙曲線上的點(diǎn)P的最小距離等于1,求雙曲線的方程.

查看答案和解析>>

科目: 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1的離心率為
2
2
,且橢圓過點(diǎn)(1,1),過原點(diǎn)的直線l與橢圓C交于A、B兩點(diǎn),橢圓上一點(diǎn)M滿足MA=MB.
(1)求橢圓C的方程;
(2)求
1
OA2
+
1
OB2
+
2
OM2
的值;
(3)是否存在定圓,使得直線l繞原點(diǎn)轉(zhuǎn)動(dòng)時(shí),AM恒與該定圓相切,若存在,求出圓的方程,若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:

長為3的線段AB的兩個(gè)端點(diǎn)A和B分別在x軸和y軸上滑動(dòng),如果點(diǎn)M是線段AB上一點(diǎn),且
MB
=2
AM

(1)求點(diǎn)M的軌跡C的方程;
(2)設(shè)軌跡C與x軸的正半軸交于點(diǎn)N,且與直線l:y=kx+m(k≠0)相交于不同的兩點(diǎn)P、Q(不同于點(diǎn)N),若NP⊥NQ,試判斷直線l是否過定點(diǎn)?若是,求出該點(diǎn)的坐標(biāo);若不是,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案