相關(guān)習(xí)題
 0  213419  213427  213433  213437  213443  213445  213449  213455  213457  213463  213469  213473  213475  213479  213485  213487  213493  213497  213499  213503  213505  213509  213511  213513  213514  213515  213517  213518  213519  213521  213523  213527  213529  213533  213535  213539  213545  213547  213553  213557  213559  213563  213569  213575  213577  213583  213587  213589  213595  213599  213605  213613  266669 

科目: 來源: 題型:

設(shè)正實(shí)數(shù)x,y,z滿足x2-3xy+4y2-z=0,則當(dāng)
z
xy
取得最小值時(shí),x+2y-z的最大值為
 

查看答案和解析>>

科目: 來源: 題型:

已知f(x)=(x-a)(x-b)-2,(a<b),并且α,β是方程f(x)=0的兩根,(α<β),則實(shí)數(shù)a,b,α,β大小關(guān)系為
 

查看答案和解析>>

科目: 來源: 題型:

已知a,b,c,d為常數(shù),若不等式
b
x+a
+
x+d
x+c
<0的解集為(-1,-
1
3
)∪(
1
2
,1),則不等式
bx
ax-1
+
dx-1
cx-1
<0的解集為
 

查看答案和解析>>

科目: 來源: 題型:

已知點(diǎn)(1,
1
3
)是函數(shù)f(x)=ax(a>0且a≠1)的圖象上一點(diǎn),等比數(shù)列{an}的前n項(xiàng)和為f(n)-c,數(shù)列{bn}(bn>0)的首項(xiàng)為c,且前n項(xiàng)和Sn滿足Sn-Sn-1=
Sn
+
Sn-1
(n≥2)
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式
(Ⅱ)求數(shù)列{
1
bnbn+1
}前n項(xiàng)和為Tn

查看答案和解析>>

科目: 來源: 題型:

已知正四面體ABCD的棱長為a,點(diǎn)O是△BCD的中心,點(diǎn)M是CD中點(diǎn).
(1)求點(diǎn)A到面BCD的距離;
(2)求AB與面BCD所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

在一次聯(lián)考后,某校對甲、乙兩個(gè)理科班的數(shù)學(xué)考試成績進(jìn)行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀,統(tǒng)計(jì)成績后,得到如下的2×2列聯(lián)表,且已知在甲、乙兩個(gè)理科班全部110人中隨機(jī)抽取人為優(yōu)秀的概率為
3
11

優(yōu)秀 非優(yōu)秀
甲班 10
乙班 30
合計(jì) 110
(1)請完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),能否有99%的把握認(rèn)為成績與班級有關(guān)系?
(3)在甲、乙兩個(gè)理科班優(yōu)秀的學(xué)生中隨機(jī)抽取兩名學(xué)生,用ξ表示抽得甲班的學(xué)生人數(shù),求ξ的分布列.

查看答案和解析>>

科目: 來源: 題型:

如圖,在三梭錐P-ABC中,PA⊥底面ABC,PA=AB=2,∠ABC=60°,∠BCA=90°,點(diǎn)D、E分別在棱PB、PC上,且DE∥BC
(1)當(dāng)D為PB中點(diǎn)時(shí),求AD與平面PAC所成角的正弦值;
(2)是否存在點(diǎn)E使得二面角A-DE-P為直二面角?說明理由,若有,求出PE的長度.

查看答案和解析>>

科目: 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2n-1.?dāng)?shù)列{bn}滿足b1=2,bn+1-2bn=8an
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)證明:數(shù)列{
bn
2n
}為等差數(shù)列,并求{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目: 來源: 題型:

如圖,O為線段A0A2013外一點(diǎn),若A0,A1,A2,A3,…,A2013中任意相鄰兩點(diǎn)的距離相等,
OA0
=
a
,
OA2013
=
b
,用
a
,
b
表示
OA0
+
OA1
+
OA2
+…+
OA2013
結(jié)果為( �。�
A、1006(
a
+
b
B、1007(
a
+
b
C、2012(
a
+
b
D、2014(
a
+
b

查看答案和解析>>

科目: 來源: 題型:

在等比數(shù)列{an}中,已知S2=30,S4=150,則a5+a6=
 

查看答案和解析>>

同步練習(xí)冊答案
闁稿骏鎷� 闂傚偊鎷�