如圖,AO是邊長為2的等邊△ABC的高,點(diǎn)D是AO上的一個(gè)動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)A、O重合),以CD為一邊在AC下方作等邊△CDE,連結(jié)BE并延長,交AC的延長線于點(diǎn)F.
(1)求證:△ACD≌△BCE;
(2)當(dāng)△CEF為等腰三角形時(shí),求△CEF的面積.
【考點(diǎn)】全等三角形的判定與性質(zhì);等腰三角形的性質(zhì);等邊三角形的性質(zhì).
【分析】(1)由△ABC和△CDE是等邊三角形,用“SAS”證得△ACD≌△BCE;
(2)首先作CP⊥BF于點(diǎn)P,由∠CBE=30°,求得CP的長,繼而求得答案.
【解答】解:(1)∵△ABC為等邊三角形
∴AC=BC,∠ACB=60°,
同理可證CD=CE,∠DCE=60°,
∴∠ACB﹣∠DCB=∠DCE﹣∠DCB,
即∠ACD=∠BCE,
在△ACD和△BCE中,
,
∴△ACD≌△BCE(SAS);
(2)由(1)得∠CBE=∠CAD=30°,得△ABF恒為直角三角形,且∠F=30°CF=CB=2,
又因?yàn)辄c(diǎn)D不與點(diǎn)A、O重合,
所以當(dāng)△CEF為等腰三角形時(shí),∠F只能為頂角,
如圖,作CP⊥BF于點(diǎn)P,
由∠CBE=30°,
得CP=BC=1,
因?yàn)镃F=EF=2,
所以S△CEF=×2×1=1.
【點(diǎn)評】此題考查了全等三角形的判定與性質(zhì)、等邊三角形的性質(zhì)、等腰三角形的性質(zhì)以及含30°角的直角三角形的性質(zhì).此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知:△ABC中,AB=AC,M是BC的中點(diǎn),D、E分別是AB、AC邊上的點(diǎn),且BD=CE.求證:MD=ME.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
兩城鎮(zhèn)A、B與兩條公路ME、MF位置如圖所示,現(xiàn)電信部門需在C處修建一座信號發(fā)射塔,要求發(fā)射塔到兩個(gè)城鎮(zhèn)A、B的距離必須相等,到兩條公路ME、MF的距離也必須相等,且在∠FME的內(nèi)部,那么點(diǎn)C應(yīng)選在何處?請?jiān)趫D中,用尺規(guī)作圖找出符合條件的點(diǎn)C.(不寫已知、求作、作法,只保留作圖痕跡)
兩城鎮(zhèn)A、B與兩條公路ME、MF位置如圖所示,現(xiàn)電信部門需在C處修建一座信號發(fā)射塔,要求發(fā)射塔到兩個(gè)城鎮(zhèn)A、B的距離必須相等,到兩條公路ME、MF的距離也必須相等,且在∠FME的內(nèi)部,那么點(diǎn)C應(yīng)選在何處?請?jiān)趫D中,用尺規(guī)作圖找出符合條件的點(diǎn)C.(不寫已知、求作、作法,只保留作圖痕跡)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
勾股定理被譽(yù)為“幾何明珠”,在數(shù)學(xué)的發(fā)展歷程中占有舉足輕重的地位.如圖1是由邊長相等的小正方形和直角三角形構(gòu)成的,可以用其面積關(guān)系驗(yàn)證勾股定理.圖2是由圖1放入長方形內(nèi)得到的,∠BAC=90°,AB=3,AC=4,點(diǎn)D、E、F、G、H、I 都在長方形KLMJ的邊上,則長方形KLMJ的面積為( )
A.90 B.100 C.110 D.121
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
材料閱讀:
在小學(xué),我們了解到正方形的每個(gè)角都是90°,每條邊都相等;本學(xué)期,我們通過折紙得到定理:直角三角形的斜邊上的中線等于斜邊的一半;同時(shí)探討得知,在直角三角形中,30°的角所對的直角邊是斜邊的一半.
(1)如圖1,在等邊三角形△ABC內(nèi)有一點(diǎn)P,且PA=2,PB=,PC=1.求∠BPC的度數(shù)和等邊△ABC的邊長.
聰聰同學(xué)的思路是:將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,畫出旋轉(zhuǎn)后的圖形(如圖2).
連接PP′.根據(jù)聰聰同學(xué)的思路,可以證明△BPP′為等邊三角形,又可以證明△ABP′≌△CBP,所以AP′=PC=1,根據(jù)勾股定理逆定理可證出△APP′為直角三角形,故此∠BPC=__________°;同時(shí),可以說明∠BPA=90°,在Rt△APB中,利用勾股定理,可以求出等邊△ABC的邊AB=__________.
(2)請你參考聰聰同學(xué)的思路,探究并解決下列問題:如圖3,在正方形ABCD內(nèi)有一點(diǎn)P,且PA=,BP=,PC=1.求∠BPC的度數(shù)和正方形ABCD的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在△ABC中,∠C=90°,AD平分∠BAC,BC=12cm,BD=8cm,則點(diǎn)D到AB的距離為__________cm.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com