如圖,已知在四邊形ABCD中,AB=20cm,BC=15 cm,CD=7 cm,AD=24 cm,∠ABC=90°。猜想∠A與∠C關(guān)系并加以證明.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
把一張邊長(zhǎng)為40 cm的正方形硬紙板,進(jìn)行適當(dāng)?shù)牟眉,折成一個(gè)長(zhǎng)方體盒子(紙板的厚度忽略不計(jì)).
(1)如圖,若在正方形硬紙板的四角各剪掉一個(gè)同樣大小的正方形,將剩余部分折成一個(gè)無(wú)蓋的長(zhǎng)方體盒子.
①要使折成的長(zhǎng)方體盒子的底面積為484 cm2,那么剪掉的正方形的邊長(zhǎng)為多少?
②折成的長(zhǎng)方體盒子的側(cè)面積是否有最大值?如果有,求出這個(gè)最大值和此時(shí)剪掉的正方形的邊長(zhǎng);如果沒(méi)有,說(shuō)明理由.
(2)若在正方形硬紙板的四周剪掉一些矩形(即剪掉的矩形至少有一條邊在正方形硬紙板的邊上),將剩余部分折成一個(gè)有蓋的長(zhǎng)方體盒子.若折成的一個(gè)長(zhǎng)方體盒子的表面積為550 cm2,求此時(shí)長(zhǎng)方體盒子的長(zhǎng)、寬、高(只需求出符合要求的一種情況).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
某樓盤一樓是車庫(kù)(暫不銷售),二樓至二十三樓均為商品房(對(duì)外銷售).商品房售價(jià)方案如下:第八層售價(jià)為3000元/米2,從第八層起每上升一層,每平方米的售價(jià)增加40元;反之,樓層每下降一層,每平方米的售價(jià)減少20元.已知商品房每套面積均為120平方米.開(kāi)發(fā)商為購(gòu)買者制定了兩種購(gòu)房方案:
方案一:購(gòu)買者先交納首付金額(商品房總價(jià)的30%),再辦理分期付款(即貸款).
方案二:購(gòu)買者若一次付清所有房款,則享受8%的優(yōu)惠,并免收五年物業(yè)管理費(fèi)(已知每月物業(yè)管理費(fèi)為a元)
(1)請(qǐng)寫(xiě)出每平方米售價(jià)y(元/米2)與樓層x(2≤x≤23,x是正整數(shù))之間的函數(shù)解析式;
(2)小張已籌到120000元,若用方案一購(gòu)房,他可以購(gòu)買哪些樓層的商品房呢?
(3)有人建議老王使用方案二購(gòu)買第十六層,但他認(rèn)為此方案還不如不免收物業(yè)管理費(fèi)而直接享受9%的優(yōu)惠劃算.你認(rèn)為老王的說(shuō)法一定正確嗎?請(qǐng)用具體的數(shù)據(jù)闡明你的看法.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在△ABC中,D是BC邊上的一點(diǎn),E是AD的中點(diǎn),過(guò)點(diǎn)A作BC的平行線交CE的延長(zhǎng)線于點(diǎn)F,且AF=BD,連接BF.
(1)求證:D是BC的中點(diǎn);
(2)如果AB=AC,試判斷四邊形AFBD是什么四邊形,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知:在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與B、C重合).以AD為邊作正方形ADEF,連接CF.
(1)如圖1,當(dāng)點(diǎn)D在線段BC上時(shí),求證:①BD⊥CF.②CF=BC﹣CD.
(2)如圖2,當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),其它條件不變,請(qǐng)直接寫(xiě)出CF、BC、CD三條線段之間的關(guān)系;
(3)如圖3,當(dāng)點(diǎn)D在線段BC的反向延長(zhǎng)線上時(shí),且點(diǎn)A、F分別在直線BC的兩側(cè),其它條件不變:①請(qǐng)直接寫(xiě)出CF、BC、CD三條線段之間的關(guān)系.②若連接正方形對(duì)角線AE、DF,交點(diǎn)為O,連接OC,探究△AOC的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖①所示,在正方形ABCD中,M是AB的中點(diǎn),E是AB的延長(zhǎng)線上一點(diǎn),MN⊥DM,且交∠CBE的平分線于點(diǎn)N.
(1)求證:MD=MN;
(2)若將上述條件中“M是AB的中點(diǎn)”改成“M是AB上任意一點(diǎn)”,其余條件不變,如圖②所示,則結(jié)論“MD=MN”還成立嗎?若成立,給出證明;若不成立,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在平行四邊形ABCD中,AB=,AD=4,將平行四邊形ABCD沿AE翻折后,點(diǎn)B恰好與點(diǎn)C重合,則折痕AE的長(zhǎng)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com