科目: 來源: 題型:
【題目】在一塊耕地上種植一種作物,每季種植成本為1000元,此作物的市場價格和這塊地上的產(chǎn)量均具有隨機(jī)性,且互不影響,其具體情況如下表:
作物產(chǎn)量(kg) | 300 | 500 |
概率 | 0.5 | 0.5 |
作物市場價格(元/kg) | 6 | 10 |
概率 | 0.4 | 0.6 |
(1)設(shè)X表示在這塊地上種植1季此作物的利潤,求X的分布列;
(2)若在這塊地上連續(xù)3季種植此作物,求這3季中至少有2季的利潤不少于2000元的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知矩形ABCD的邊AB=2,BC=1,以A為坐標(biāo)原點,AB,AD邊分別在x軸、y軸的正半軸上,建立直角坐標(biāo)系。將矩形折疊,使A點落在線段DC上,重新記為點
(1)當(dāng)點坐標(biāo)為(1,1)時,求折痕所在直線方程.
(2)若折痕所在直線的斜率為k,試求折痕所在直線的方程;
(3)當(dāng)時,設(shè)折痕所在直線與軸交于點E,與軸交于點F,將沿折痕EF旋轉(zhuǎn).使二面角的大小為,設(shè)三棱錐的外接球表面積為,試求最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓系方程: (, ), 是橢圓的焦點, 是橢圓上一點,且.
(1)求的方程;
(2)為橢圓上任意一點,過且與橢圓相切的直線與橢圓交于, 兩點,點關(guān)于原點的對稱點為,求證: 的面積為定值,并求出這個定值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:萬元)對年銷售量(單位:噸)和年利潤(單位:萬元)的影響.對近六年的年宣傳費(fèi)和年銷售量的數(shù)據(jù)作了初步統(tǒng)計,得到如下數(shù)據(jù):
年份 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
年宣傳費(fèi)(萬元) | 38 | 48 | 58 | 68 | 78 | 88 |
年銷售量(噸) | 16.8 | 18.8 | 20.7 | 22.4 | 24.0 | 25.5 |
經(jīng)電腦模擬,發(fā)現(xiàn)年宣傳費(fèi)(萬元)與年銷售量(噸)之間近似滿足關(guān)系式,即.對上述數(shù)據(jù)作了初步處理,得到相關(guān)的值如下表:
75.3 | 24.6 | 18.3 | 101.4 |
(1)根據(jù)所給數(shù)據(jù),求關(guān)于的回歸方程;
(2)規(guī)定當(dāng)產(chǎn)品的年銷售量(噸)與年宣傳費(fèi)(萬元)的比值在區(qū)間內(nèi)時認(rèn)為該年效益良好.該公司某年投入的宣傳費(fèi)用(單位:萬元)分別為:、、、、、,試根據(jù)回歸方程估計年銷售量,從這年中任選年,記其中選到效益良好年的數(shù)量為,試求隨機(jī)變量的分布列和期望.(其中為自然對數(shù)的底數(shù),)
附:對于一組數(shù)據(jù),,…,,其回歸直線中的斜率和截距的最小二乘估計分別為,.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,已知點A(1,1),B(2,3),C(3,2),點P(x,y)在△ABC三邊圍成的區(qū)域(含邊界)上.
(1)若 ,求| |;
(2)設(shè) =m +n (m,n∈R),用x,y表示m﹣n,并求m﹣n的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,四面體ABCD及其三視圖(如圖2所示),過棱AB的中點E作平行于AD,BC的平面分別交四面體的棱BD,DC,CA于點F,G,H.
(1)證明:四邊形EFGH是矩形;
(2)求直線AB與平面EFGH夾角θ的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知平行四邊形ABCD的三個頂點的坐標(biāo)為
(1)求平行四邊形ABCD的頂點D的坐標(biāo);
(2)求四邊形ABCD的面積
(3)求的平分線所在直線方程。
查看答案和解析>>
科目: 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C所對應(yīng)的邊分別為a,b,c.
(1)若a,b,c成等差數(shù)列,證明:sinA+sinC=2sin(A+C);
(2)若a,b,c成等比數(shù)列,求cosB的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知向量(其中),記,且滿足.
(1)求函數(shù)的解析式;
(2)若關(guān)于的方程在上有三個不相等的實數(shù)根,求實數(shù)的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com