科目: 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AD邊上一點(diǎn),PQ垂直平分BE,分別交AD、BE、BC于點(diǎn)P、O、Q,連接BP、QE
(1)求證:四邊形BPEQ是菱形:
(2)若AB=6,F是AB中點(diǎn),OF=4,求菱形BPEQ的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠BCD=90°,將四邊形ABCD沿AB方向平移得到四邊形A'B'C'D',BC與C'D'相交于點(diǎn)E,若BC=8,CE=3,C'E=2,則陰影部分的面積為( 。
A.12+2B.13C.2+6D.26
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知在平行四邊形ABCD中,AB=5,BC=8,cosB=,點(diǎn)E是BC邊上的動(dòng)點(diǎn),當(dāng)以CE為半徑的⊙C與邊AD有兩個(gè)交點(diǎn)時(shí),半徑CE的取值范圍是( 。
A. 0<CE≤8 B. 0<CE≤5 C. 3<CE≤8 D. 3<CE≤5
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,⊙O是正方形ABCD的外接圓,P是⊙O上不與A、B重合的任意一點(diǎn),則∠APB等于( )
A.45° B.60° C.45° 或135° D.60° 或120°
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c(a≠0)與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(﹣1,0),且OC=OB,tan∠OAC=4.
(1)求拋物線的解析式;
(2)若點(diǎn)D和點(diǎn)C關(guān)于拋物線的對(duì)稱軸對(duì)稱,直線AD下方的拋物線上有一點(diǎn)P,過點(diǎn)P作PH⊥AD于點(diǎn)H,作PM平行于y軸交直線AD于點(diǎn)M,交x軸于點(diǎn)E,求△PHM的周長的最大值.
(3)在(2)的條件下,如圖2,在直線EP的右側(cè)、x軸下方的拋物線上是否存在點(diǎn)N,過點(diǎn)N作NG⊥x軸交x軸于點(diǎn)G,使得以點(diǎn)E、N、G為頂點(diǎn)的三角形與△AOC相似?如果存在,請直接寫出點(diǎn)G的坐標(biāo):如果不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,BC=8,E是BC邊上一點(diǎn),將矩形沿AE折疊,點(diǎn)B落在點(diǎn)B'處,當(dāng)△B'EC是直角三角形時(shí),BE的長為( 。
A.2B.6C.3或6D.2或3或6
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,正方形ABCD的邊長為3,對(duì)角線AC、BD相交于點(diǎn)O,將AC向兩個(gè)方向延長,分別至點(diǎn)E和點(diǎn)F,且AE=CF=3,則四邊形BEDF的周長為( )
A. 20B. 24C. 12D. 12
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線與x軸的交點(diǎn)坐標(biāo)分別為A(1,0),B(x2,0)(點(diǎn)B在點(diǎn)A的右側(cè)),其對(duì)稱軸是x=3,該函數(shù)有最小值是﹣2.
(1)求二次函數(shù)解析式;
(2)在圖1上作平行于x軸的直線,交拋物線于C(x3,y3),D(x4,y4),求x3+x4的值;
(3)將(1)中函數(shù)的部分圖象(x>x2)向下翻折與原圖象未翻折的部分組成圖象“G”,如圖2,在(2)中平行于x軸的直線取點(diǎn)E(x5,y5)、(x4<x5),結(jié)合函數(shù)圖象求x3+x4+x5的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,如圖1:中,、的平分線相交于點(diǎn),過點(diǎn)作交、于、
(1)直接寫出圖1中所有的等腰三角形.指出與、間有怎樣的數(shù)量關(guān)系?
(2)在(1)的條件下,若,,求的周長;
(3)如圖2,若中,的平分線與三角形外角的平分線交于點(diǎn),過點(diǎn)作交于,交于,請問(1)中與、間的關(guān)系還是否存在,若存在,說明理由:若不存在,寫出三者新的數(shù)量關(guān)系,并說明理由;
(4)如圖3,、的外角平分線的延長線相交于點(diǎn),請直接寫出,、,之間的數(shù)量關(guān)系.不需證明.
查看答案和解析>>
科目: 來源: 題型:
【題目】(類比概念)三角形的內(nèi)切圓是以三個(gè)內(nèi)角的平分線的交點(diǎn)為圓心,以這點(diǎn)到三邊的距離為半徑的圓,則三角形可以稱為圓的外切三角形,可以得出三角形的三邊與該圓相切.以此類推,如圖1,各邊都和圓相切的四邊形稱為圓外切四邊形
(性質(zhì)探究)如圖1,試探究圓外切四邊形的ABCD兩組對(duì)邊AB,CD與BC,AD之間的數(shù)量關(guān)系
猜想結(jié)論: (要求用文字語言敘述)
寫出證明過程(利用圖1,寫出已知、求證、證明)
(性質(zhì)應(yīng)用)
①初中學(xué)過的下列四邊形中哪些是圓外切四邊形 (填序號(hào))
A:平行四邊形:B:菱形:C:矩形;D:正方形
②如圖2,圓外切四邊形ABCD,且AB=12,CD=8,則四邊形的周長是 .
③圓外切四邊形的周長為48cm,相鄰的三條邊的比為5:4:7,求四邊形各邊的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com