相關習題
 0  259536  259544  259550  259554  259560  259562  259566  259572  259574  259580  259586  259590  259592  259596  259602  259604  259610  259614  259616  259620  259622  259626  259628  259630  259631  259632  259634  259635  259636  259638  259640  259644  259646  259650  259652  259656  259662  259664  259670  259674  259676  259680  259686  259692  259694  259700  259704  259706  259712  259716  259722  259730  266669 

科目: 來源: 題型:

【題目】已知函數(shù),kR.

(I)求函數(shù)f(x)的單調區(qū)間;

(II)k>0時,若函數(shù)f(x)在區(qū)間(1,2)內單調遞減,求k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】設函數(shù)(其中aR).

1)討論函數(shù)fx)的奇偶性,并說明理由.

2)若,試判斷函數(shù)fx)在區(qū)間[1,+∞)上的單調性,并用函數(shù)單調性定義給出證明.

查看答案和解析>>

科目: 來源: 題型:

【題目】F為拋物線的焦點,A、B是拋物線C上的兩個動點,O為坐標原點.

(I)若直線AB經(jīng)過焦點F,且斜率為2,求線段AB的長度|AB|;

(II)OAOB時,求證:直線AB經(jīng)過定點M(4,0).

查看答案和解析>>

科目: 來源: 題型:

【題目】在△ABC中,三邊a,b,c所對的角分別為A,B,C,設函數(shù)f(x)=sin2x+cos2x,且f()=2.
(1)若acosB+bcosA=csinC,求角B的大;
(2)記g(λ)=||,若||=||=3,試求g(λ)的最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】定義在區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),如果,使得,則稱為區(qū)間[a,b]上的中值點”.

下列函數(shù):①;;中,在區(qū)間[0,1]中值點多于一個的函數(shù)序號為_________.(寫出所有滿足條件的函數(shù)的序號)

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)的圖象關于點(-1,0)對稱,且當x(-∞,0)時,成立,(其中f′(x)f(x)的導數(shù));若, ,,則a,b,c的大小關系是(

A. a>b>c B. b>a>c C. c>a>b D. c>b>a

查看答案和解析>>

科目: 來源: 題型:

【題目】某學校為準備參加市運動會,對本校高一、高二兩個田徑隊中30名跳高運動員進行了測試,并用莖葉圖表示出本次測試30人的跳高成績(單位:cm).跳高成績在175cm以上(包括175cm)定義為“合格”,成績在175cm以下定義為“不合格”.

(1)如果從所有運動員中用分層抽樣抽取“合格”與“不合格”的人數(shù)共10人,問就抽取“合格”人數(shù)是多少?
(2)若從所有“合格”運動員中選取2名,用X表示所選運動員來自高一隊的人數(shù),試寫出X的分布圖,并求X的數(shù)學期望.

查看答案和解析>>

科目: 來源: 題型:

【題目】為了解某班學生喜愛打籃球是否與性別有關,對本班人進行了問卷調查得到了如下的列聯(lián)表:

喜愛打籃球

不喜愛打籃球

合計

男生

女生

合計

已知在全部人中隨機抽取人抽到喜愛打籃球的學生的概率為.

(1)請將上面的列聯(lián)表補充完整;

(2)是否有的把握認為喜愛打籃球與性別有關?說明你的理由;

下面的臨界值表供參考:

(參考公式:,

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)

(1)若,求處的切線方程;

(2)若在區(qū)間上恰有兩個零點,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】某學校為了解高三年級學生寒假期間的學習情況,抽取甲、乙兩班,調查這兩個班的學生在寒假期間每天平均學習的時間(單位:小時),統(tǒng)計結果繪成頻率分別直方圖(如圖).已知甲、乙兩班學生人數(shù)相同,甲班學生每天平均學習時間在區(qū)間的有8人.

I)求直方圖中的值及甲班學生每天平均學習時間在區(qū)間的人數(shù);

II)從甲、乙兩個班每天平均學習時間大于10個小時的學生中任取4人參加測試,設4人中甲班學生的人數(shù)為,求的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案