科目: 來源: 題型:
【題目】已知四棱錐A-BCDE中,底面BCDE為直角梯形,CD⊥平面ABC,側(cè)面ABC是等腰直角三角形,∠EBC=∠ABC=90°,BC=CD=2BE=2,點(diǎn)M是棱AD的中點(diǎn)
(I)證明:平面AED⊥平面ACD;
(Ⅱ)求銳二面角B-CM-A的余弦值
查看答案和解析>>
科目: 來源: 題型:
【題目】若函數(shù)f(x)=2x2+(x﹣2a)|x﹣a|在區(qū)間[﹣3,1]上不是單調(diào)函數(shù),則實(shí)數(shù)a的取值范圍是( )
A.[﹣4,1]
B.[﹣3,1]
C.(﹣6,2)
D.(﹣6,1)
查看答案和解析>>
科目: 來源: 題型:
【題目】如果函數(shù)f(x)= 滿足:對于任意的x1 , x2∈[0,2],都有|f(x1)﹣f(x2)|≤a2恒成立,則a的取值范圍是( )
A.[﹣ ]
B.[﹣ ]
C.(﹣ ]
D.(﹣ ]∪[ )
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2, .
(1)求證:PD⊥平面PAB;
(2)求直線PB與平面PCD所成角的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某種植園在芒果臨近成熟時(shí),隨機(jī)從一些芒果樹上摘下100個(gè)芒果,其質(zhì)量分別在,,,,,(單位:克)中,經(jīng)統(tǒng)計(jì)得頻率分布直方圖如圖所示.
(1) 經(jīng)計(jì)算估計(jì)這組數(shù)據(jù)的中位數(shù);
(2)現(xiàn)按分層抽樣從質(zhì)量為,的芒果中隨機(jī)抽取個(gè),再從這個(gè)中隨機(jī)抽取個(gè),求這個(gè)芒果中恰有個(gè)在內(nèi)的概率.
(3)某經(jīng)銷商來收購芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計(jì)總體,該種植園中還未摘下的芒果大約還有個(gè),經(jīng)銷商提出如下兩種收購方案:
A:所以芒果以元/千克收購;
B:對質(zhì)量低于克的芒果以元/個(gè)收購,高于或等于克的以元/個(gè)收購.
通過計(jì)算確定種植園選擇哪種方案獲利更多?
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的參數(shù)方程為(為參數(shù)).以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求的普通方程和的直角坐標(biāo)方程;
(2)若過點(diǎn)的直線與交于,兩點(diǎn),與交于,兩點(diǎn),求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓C以坐標(biāo)軸為對稱軸,以坐標(biāo)原點(diǎn)為對稱中心,橢圓的一個(gè)焦點(diǎn)為,點(diǎn)在橢圓上,
Ⅰ求橢圓C的方程.
Ⅱ斜率為k的直線l過點(diǎn)F且不與坐標(biāo)軸垂直,直線l交橢圓于A、B兩點(diǎn),線段AB的垂直平分線與x軸交于點(diǎn)G,求點(diǎn)G橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知直線l經(jīng)過拋物線y2=6x的焦點(diǎn)F,且與拋物線相交于A,B兩點(diǎn).
(1)若直線l的傾斜角為60°,求|AB|的值;
(2)若|AB|=9,求線段AB的中點(diǎn)M到準(zhǔn)線的距離.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)f(x)=|ax﹣2|.
(1)若關(guān)于x的不等式f(x)<3的解集為(﹣ , ),求a的值;
(2)f(x)+f(﹣x)≥a對于任意x∈R恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com