相關習題
 0  258067  258075  258081  258085  258091  258093  258097  258103  258105  258111  258117  258121  258123  258127  258133  258135  258141  258145  258147  258151  258153  258157  258159  258161  258162  258163  258165  258166  258167  258169  258171  258175  258177  258181  258183  258187  258193  258195  258201  258205  258207  258211  258217  258223  258225  258231  258235  258237  258243  258247  258253  258261  266669 

科目: 來源: 題型:

【題目】已知拋物線y2=2px(p>0)上一點M(1,m)(m>0)到其焦點的距離為5,雙曲線 的左頂點為A,若雙曲線一條漸近線與直線AM平行,則實數a等于(
A.
B.
C.3
D.9

查看答案和解析>>

科目: 來源: 題型:

【題目】若函數fA(x)的定義域為A=[a,b),且fA(x)=( + ﹣1)2 +1,其中a,b為任意正實數,且a<b.
(1)求函數fA(x)的最小值和最大值;
(2)若x1∈Ik=[k2 , (k+1)2),x2∈Ik+1=[(k+1)2 , (k+2)2),其中k是正整數,對一切正整數k,不等式 (x1)+ (x2))<m都有解,求m的取值范圍;
(3)若對任意x1 , x2 , x3∈A,都有 , 為三邊長構成三角形,求 的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】一個袋中裝有四個形狀大小完全相同的球,球的編號分別為1,2,3,4.
(1)從袋中隨機取兩個球,求取出的球的編號之和不大于4的概率;
(2)先從袋中隨機取一個球,該球的編號為m,將球放回袋中,然后再從袋中隨機取一個球,該球的編號為n,求n<m+2的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知F1 , F2為橢圓 的左、右焦點,F2在以 為圓心,1為半徑的圓C2上,且|QF1|+|QF2|=2a.

(1)求橢圓C1的方程;
(2)過點P(0,1)的直線l1交橢圓C1于A,B兩點,過P與l1垂直的直線l2交圓C2于C,D兩點,M為線段CD中點,求△MAB面積的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓 的離心率為,以橢圓長、短軸四個端點為頂點為四邊形的面積為.

(Ⅰ)求橢圓的方程;

(Ⅱ)如圖所示,記橢圓的左、右頂點分別為、,當動點在定直線上運動時,直線分別交橢圓于兩點、,求四邊形面積的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】某農科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關系進行分析研究,他們分別記錄了11月1日至11月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數,得到如表資料:

日期

11月1日

11月2日

11月3日

11月4日

11月5日

溫差x(℃)

8

11

12

13

10

發(fā)芽數y(顆)

16

25

26

30

23

設農科所確定的研究方案是:先從這五組數據中選取2組,用剩下的3組數據求線性回歸方程,再對被選取的2組數據進行檢驗.
(注: ,
(1)求選取的2組數據恰好是不相鄰2天數據的概率;
(2)若選取的是11月1日與11月5日的兩組數據,請根據11月2日至11月4日的數據,求出y關于x的線性回歸方程 ;
(3)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數f(x)=3x2+2(k﹣1)x+k+5.
(1)求函數f(x)在[0,3]上最大值;
(2)若函數f(x)在[0,3]上有零點,求實數k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】函數f(x)=
(1)求函數f(x)的定義域A;
(2)設B={x|﹣1<x<2},當實數a、b∈(B∩RA)時,證明: |.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,直三棱柱中, , , 的中點,△是等腰三角形, 的中點, 上一點;

(1)若∥平面,求;

(2)平面將三棱柱分成兩個部分,求含有點的那部分體積;

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數f(x)=
(1)判斷f(x)的奇偶性;
(2)判斷f(x)在R上的單調性,并用定義證明;
(3)是否存在實數t,使不等式f(x﹣t)+f(x2﹣t2)≥0對一切x∈[1,2]恒成立?若存在,求出t的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案