科目: 來源: 題型:
【題目】已知:如圖,六邊形 ABCDEF 中,∠A+∠B+∠C=∠D+∠E+∠F,猜想可 得六邊形 ABCDEF 中必有兩條邊是平行的.
(1)根據(jù)圖形寫出你的猜想: ∥ ;
(2)請證明你在(1)中寫出的猜想.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在直角三角形ABC中,∠ACB=90°,AC=6,BC=8,點M是AB上的一點,點N是CB上的一點.
(1)若3BM=4CN.
①如圖1,當CN=時,判斷MN與AC的位置關系,并說明理由;
②如圖2,連接AN,CM,當∠CAN與△CMB中的一個角相等時,求BM的值.
(2)當MN⊥AB時,將△NMB沿直線MN翻折得到△NMF,點B落在射線BA上的F處,設MB=x,△NMF與△ABC重疊部分的面積為y,求y關于x的函數(shù)表達式及x的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】附加題:
探究題:我們知道等腰三角形的兩個底角相等,如下面每個圖中的△ABC中AB、BC是兩腰,所以∠BAC=∠BCA.利用這條性質(zhì),解決下面的問題:
已知下面的正多邊形中,相鄰四個頂點連接的對角線交于點O它們所夾的銳角為a.如圖:
正五邊形α=_____;正六邊形α=______;正八邊α=_____;當正多邊形的邊數(shù)是n時,α=______.
查看答案和解析>>
科目: 來源: 題型:
【題目】在四邊形中,,
(1)如圖(a)所示,、分別是和的角平分線,判斷與的位置關系,并證明.
(2)如圖(b)所示,、分別是和的角平分線,直接寫出與的位置關系.
(3)如圖(c)所示,、分別是和的角平分線,判斷與的位置關系,并證明.
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)已知,是平面上的任意一點,過點作,,垂足分別為點、,求的度數(shù).
(2)探究與有什么關系?(直接寫出結(jié)論)
(3)通過上面這兩道題,你能說出如果一個角的兩邊分別垂直于另一個角的兩邊,則這兩個角是什么關系嗎?
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)一個凸多邊形除一個內(nèi)角外,其余各角之和為2750°,這個多邊形的邊數(shù)為__________,除去的這個內(nèi)角的度數(shù)為__________.
(2)一個多邊形截去一個角后,形成另一個多邊形的內(nèi)角和是1620°,則原來多邊形的邊數(shù)是____.
(3)一個凸多邊形的某一個內(nèi)角的外角與其余內(nèi)角的和恰為500°,那么這個多邊形的邊數(shù)是_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知直線與軸,軸分別交于,兩點,以為直角頂點在第二象限作等腰.
(1)求點的坐標,并求出直線的關系式;
(2)如圖,直線交軸于,在直線上取一點,連接,若,求證:.
(3)如圖,在(1)的條件下,直線交軸于點,是線段上一點,在軸上是否存在一點,使面積等于面積的一半?若存在,請求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】問題發(fā)現(xiàn):如圖,在中,,為邊所在直線上的動點(不與點、重合),連結(jié),以為邊作,且,根據(jù),得到,結(jié)合,得出,發(fā)現(xiàn)線段與的數(shù)量關系為,位置關系為;
(1)探究證明:如圖,在和中,,,且點在邊上滑動(點不與點、重合),連接.
①則線段,,之間滿足的等量關系式為_____;
②求證: ;
(2)拓展延伸:如圖,在四邊形中,.若,,求的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】在甲村至乙村的公路旁有一塊山地正在開發(fā),現(xiàn)有一處需要爆破.已知點與公路上的?空的距離為米,與公路上另一?空的距離為米,且,如圖,為了安全起見,爆破點周圍半徑米范圍內(nèi)不得進入,問在進行爆破時,公路段是否有危險,是否需要暫時封鎖?請通過計算進行說明.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,設二次函數(shù)y1=mx2﹣6mx+8m(m為常數(shù)).
(1)若函數(shù)y1經(jīng)過點(1,3),求函數(shù)y1的表達式;
(2)若m<0,當x<時,此二次函數(shù)y隨x的增大而增大,求a的取值范圍;
(3)已知一次函數(shù)y2=x﹣2,當y1y2>0時,求x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com