相關習題
 0  258948  258956  258962  258966  258972  258974  258978  258984  258986  258992  258998  259002  259004  259008  259014  259016  259022  259026  259028  259032  259034  259038  259040  259042  259043  259044  259046  259047  259048  259050  259052  259056  259058  259062  259064  259068  259074  259076  259082  259086  259088  259092  259098  259104  259106  259112  259116  259118  259124  259128  259134  259142  266669 

科目: 來源: 題型:

【題目】定義在上的函數(shù)滿足且當,若對任意的,不等式恒成立,則實數(shù)的最大值是( )

A. B. C. D.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的對稱軸方程;

2)將函數(shù)的圖象上各點的縱坐標保持不變,橫坐標伸長為原來的2倍,然后再向左平移個單位,得到函數(shù)的圖象.若, , 分別是三個內(nèi)角, , 的對邊, , ,且,求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】設數(shù)列的前項和為,且對任意正整數(shù),滿足

1)求數(shù)列的通項公式.

2)設,求數(shù)列的前項和

查看答案和解析>>

科目: 來源: 題型:

【題目】已知,,,,點的內(nèi)心,記,,則( )

A. B. C. D.

查看答案和解析>>

科目: 來源: 題型:

【題目】等比數(shù)列中,,公比,用表示它的前項之積:,則中最大的是( )

A. B. C. D.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)

(1)若對于恒成立,求實數(shù)的取值范圍

(2)若對于,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】某氣象儀器研究所按以下方案測試一種彈射型氣象觀測儀器的垂直彈射高度:A、BC三地位于同一水平面上,在C處進行該儀器的垂直彈射,觀測點A、B兩地相距100米,∠BAC60°,在A地聽到彈射聲音的時間比在B地晚

秒. A地測得該儀器彈至最高點H時的仰角為30°.

(1)求A、C兩地的距離;

(2)求該儀器的垂直彈射高度CH.(聲音的傳播速度為340米/秒)

查看答案和解析>>

科目: 來源: 題型:

【題目】已知圓 和點,動圓經(jīng)過點且與圓相切,圓心的軌跡為曲線

(1)求曲線的方程;

(2)點是曲線軸正半軸的交點,點, 在曲線上,若直線, 的斜率分別是, ,滿足,求面積的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標系中,已知圓的方程為:,直線的方程為.

(1)求證:直線恒過定點;

(2)當直線被圓截得的弦長最短時,求直線的方程;

(3)在(2)的前提下,若為直線上的動點,且圓上存在兩個不同的點到點的距離為,求點的橫坐標的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在四棱錐中,底面是平行四邊形, ,側面底面, , , 分別為, 的中點,點在線段上.

(1)求證: 平面;

(2)若直線與平面所成的角和直線與平面所成的角相等,求的值.

【答案】(1)證明見解析;(2) .

【解析】試題分析:

在平行四邊形中,由條件可得,進而可得。由側面底面,得底面,故得,所以可證得平面.(Ⅱ)先證明平面平面,由面面平行的性質可得平面.(Ⅲ)建立空間直角坐標系,通過求出平面的法向量,根據(jù)線面角的向量公式可得。

試題解析:

(Ⅰ)證明:在平行四邊形中,

, , ,

,

,

, 分別為, 的中點,

,

,

∵側面底面,且,

底面

底面,

,

平面, 平面

平面

(Ⅱ)證明:∵的中點, 的中點,

,

平面 平面,

平面

同理平面,

平面, 平面,

∴平面平面

平面,

平面

(Ⅲ)解:由底面 ,可得 , 兩兩垂直,

建立如圖空間直角坐標系,

, , , ,

所以 , ,

,則,

, ,

易得平面的法向量,

設平面的法向量為,則:

,得

,得,

∵直線與平面所成的角和此直線與平面所成的角相等,

,即

,

解得(舍去),

點睛用向量法確定空間中點的位置的方法

根據(jù)題意建立適當?shù)目臻g直角坐標系,由條件確定有關點的坐標,運用共線向量用參數(shù)(參數(shù)的范圍要事先確定確定出未知點的坐標,根據(jù)向量的運算得到平面的法向量或直線的方向向量,根據(jù)所給的線面角(或二面角)的大小進行運算,進而求得參數(shù)的值,通過與事先確定的參數(shù)的范圍進行比較,來判斷參數(shù)的值是否符合題意,進而得出點是否存在的結論。

型】解答
束】
21

【題目】如圖,橢圓上的點到左焦點的距離最大值是,已知點在橢圓上,其中為橢圓的離心率.

(1)求橢圓的方程;

(2)過原點且斜率為的直線交橢圓于、兩點,其中在第一象限,它在軸上的射影為點,直線交橢圓于另一點.證明:對任意的,點恒在以線段為直徑的圓內(nèi).

查看答案和解析>>

同步練習冊答案