科目: 來源: 題型:
【題目】如圖,已知點(diǎn) 分別是Δ
的邊
的中點(diǎn),連接
.現(xiàn)將
沿
折疊至Δ
的位置,連接
.記平面
與平面
的交線為
,二面角
大小為
.
(1)證明:
(2)證明:
(3)求平面 與平面
所成銳二面角大小.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知動點(diǎn) 到點(diǎn)
的距離比它到直線
的距離小
,記動點(diǎn)
的軌跡為
.若以
為圓心,
為半徑(
)作圓,分別交
軸于
兩點(diǎn),連結(jié)并延長
,分別交曲線
于
兩點(diǎn).
(1)求曲線 的方程;
(2)求證:直線 的斜率為定值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四棱錐 中,底面
為梯形,
底面
,
.過
作一個平面
使得
平面
.
(1)求平面 將四棱錐
分成兩部分幾何體的體積之比;
(2)若平面 與平面
之間的距離為
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知直線 過坐標(biāo)原點(diǎn)
,圓
的方程為
.
(1)當(dāng)直線 的斜率為
時,求
與圓
相交所得的弦長;
(2)設(shè)直線 與圓
交于兩點(diǎn)
,且
為
的中點(diǎn),求直線
的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】共享單車是指由企業(yè)在校園、公交站點(diǎn)、商業(yè)區(qū)、公共服務(wù)區(qū)等場所提供的自行車單車共享服務(wù),由于其依托“互聯(lián)網(wǎng)+”,符合“低碳出行”的理念,已越來越多地引起了人們的關(guān)注.某部門為了對該城市共享單車加強(qiáng)監(jiān)管,隨機(jī)選取了100人就該城市共享單車的推行情況進(jìn)行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評分值(百分制)按照[50,60),[60,70),…,[90,100]分成5組,制成如圖所示頻率分直方圖.
(Ⅰ) 求圖中x的值;
(Ⅱ) 已知滿意度評分值在[90,100]內(nèi)的男生數(shù)與女生數(shù)的比為2:1,若在滿意度評分值為[90,100]的人中隨機(jī)抽取4人進(jìn)行座談,設(shè)其中的女生人數(shù)為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】某企業(yè)準(zhǔn)備投資 萬元興辦一所中學(xué),對當(dāng)?shù)亟逃袌鲞M(jìn)行調(diào)查后,得到了如下的數(shù)據(jù)表格(以班級為單位):
初中 | 26 | 4 |
高中 | 54 | 6 |
第一年因生源和環(huán)境等因素,全校總班級至少 個,至多
個,若每開設(shè)一個初、高中班,可分別獲得年利潤
萬元、
萬元,則第一年利潤最大為
A. 萬元 B.
萬元 C.
萬元 D.
萬元
查看答案和解析>>
科目: 來源: 題型:
【題目】數(shù)列中,若對任意
都有
(
為常數(shù))成立,則稱
為“等差比數(shù)列”,下面對“等差比數(shù)列” 的判斷:①
不可能為
;②等差數(shù)列一定是等差比數(shù)列; ③等比數(shù)列一定是等差比數(shù)列 ;④通項(xiàng)公式為
(其中
,且
,
)的數(shù)列一定是等差比數(shù)列,其中正確的判斷是( )
A. ①③④ B. ②③④ C. ①④ D. ①③
查看答案和解析>>
科目: 來源: 題型:
【題目】已知 ,設(shè)命題
:指數(shù)函數(shù)
≠
在
上單調(diào)遞增.命題
:函數(shù)
的定義域?yàn)?
.若“
”為假,“
”為真,求
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列,
,
為數(shù)列
的前
項(xiàng)和,向量
,
,
.
(1)若,求數(shù)列
通項(xiàng)公式;
(2)若,
.
①證明:數(shù)列為等差數(shù)列;
②設(shè)數(shù)列滿足
,問是否存在正整數(shù)
,
,且
,
,使得
、
、
成等比數(shù)列,若存在,求出
、
的值;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】下列四個命題:(1)已知向量 是空間的一組基底,則向量
也是空間的一組基底;(2) 在正方體
中,若點(diǎn)
在
內(nèi),且
,則
的值為1;(3) 圓
上到直線
的距離等于1的點(diǎn)有2個;(4)方程
表示的曲線是一條直線.其中正確命題的序號是.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com