科目: 來源: 題型:
【題目】如圖,,,以BC為直徑作半圓,圓心為點(diǎn)O;以點(diǎn)C為圓心,BC為半徑作,過點(diǎn)O作AC的平行線交兩弧于點(diǎn)D、E,則陰影部分的面積是
A. B.
C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點(diǎn)A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x軸,∠ABC=135°,且AB=4.
(1)填空:拋物線的頂點(diǎn)坐標(biāo)為 (用含m的代數(shù)式表示);
(2)求△ABC的面積(用含a的代數(shù)式表示);
(3)若△ABC的面積為2,當(dāng)2m﹣5≤x≤2m﹣2時(shí),y的最大值為2,求m的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖(1),已知點(diǎn)G在正方形ABCD的對角線AC上,GE⊥BC,垂足為點(diǎn)E,GF⊥CD,垂足為點(diǎn)F.
(1)證明與推斷:
①求證:四邊形CEGF是正方形;
②推斷:的值為 :
(2)探究與證明:
將正方形CEGF繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)α角(0°<α<45°),如圖(2)所示,試探究線段AG與BE之間的數(shù)量關(guān)系,并說明理由:
(3)拓展與運(yùn)用:
正方形CEGF在旋轉(zhuǎn)過程中,當(dāng)B,E,F(xiàn)三點(diǎn)在一條直線上時(shí),如圖(3)所示,延長CG交AD于點(diǎn)H.若AG=6,GH=2,則BC= .
查看答案和解析>>
科目: 來源: 題型:
【題目】某商品的進(jìn)價(jià)為每件50元.當(dāng)售價(jià)為每件70元時(shí),每星期可賣出300件,現(xiàn)需降價(jià)處理,且經(jīng)市場調(diào)查:每降價(jià)1元,每星期可多賣出20件.在確保盈利的前提下,解答下列問題:
(1)若設(shè)每件降價(jià)x元、每星期售出商品的利潤為y元,請寫出y與x的函數(shù)關(guān)系式,并求出自變量x的取值范圍;
(2)當(dāng)降價(jià)多少元時(shí),每星期的利潤最大?最大利潤是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB是⊙O的直徑,BC切⊙O于點(diǎn)B,連接CO并延長交⊙O于點(diǎn)D、E,連接AD并延長交BC于點(diǎn)F.
(1)試判斷∠CBD與∠CEB是否相等,并證明你的結(jié)論;
(2)求證:;
(3)若BC=AB,求tan∠CDF的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC中,AB=BC,CD⊥AB于點(diǎn)D,CD=BD,BE平分∠ABC,點(diǎn)H是BC邊的中點(diǎn),連接DH,交BE于點(diǎn)G.
(1)求證:△ADC≌△FDB;
(2)求證:CE=BF;
(3)連結(jié)CG,判斷△ECG的形狀,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b與反比例函數(shù)y=(m≠0)的圖象交于點(diǎn)A(3,1),且過點(diǎn)B(0,﹣2).
(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)如果點(diǎn)P是x軸上一點(diǎn),且△ABP的面積是3,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】據(jù)調(diào)查,超速行駛是引發(fā)交通事故的主要原因之一.小強(qiáng)用所學(xué)知識對一條筆直公路上的車輛進(jìn)行測速,如圖所示,觀測點(diǎn)C到公路的距離CD=200m,檢測路段的起點(diǎn)A位于點(diǎn)C的南偏東60°方向上,終點(diǎn)B位于點(diǎn)C的南偏東45°方向上.一輛轎車由東向西勻速行駛,測得此車由A處行駛到B處的時(shí)間為10s.問此車是否超過了該路段16m/s的限制速度?(觀測點(diǎn)C離地面的距離忽略不計(jì),參考數(shù)據(jù):≈1.41,≈1.73)
查看答案和解析>>
科目: 來源: 題型:
【題目】從化市某中學(xué)初三(1)班數(shù)學(xué)興趣小組為了解全校800名初三學(xué)生的“初中畢業(yè)選擇升學(xué)和就業(yè)”情況,特對本班50名同學(xué)們進(jìn)行調(diào)查,根據(jù)全班同學(xué)提出的3個(gè)主要觀點(diǎn):A高中,B中技,C就業(yè),進(jìn)行了調(diào)查(要求每位同學(xué)只選自己最認(rèn)可的一項(xiàng)觀點(diǎn));并制成了扇形統(tǒng)計(jì)圖(如圖).請回答以下問題:
(1)該班學(xué)生選擇 觀點(diǎn)的人數(shù)最多,共有 人,在扇形統(tǒng)計(jì)圖中,該觀點(diǎn)所在扇形區(qū)域的圓心角是 度.
(2)利用樣本估計(jì)該校初三學(xué)生選擇“中技”觀點(diǎn)的人數(shù).
(3)已知該班只有2位女同學(xué)選擇“就業(yè)”觀點(diǎn),如果班主任從該觀點(diǎn)中,隨機(jī)選取2位同學(xué)進(jìn)行調(diào)查,那么恰好選到這2位女同學(xué)的概率是多少?(用樹形圖或列表法分析解答).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com