科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中.己知直線l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程是ρ=4.
(1)寫出直線l的普通方程與曲線C的直角坐標(biāo)系方程;
(2)直線l與曲線C相交于A、B兩點(diǎn),求∠AOB的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,過點(diǎn)A作⊙O的切錢EP交CB 的延長線于P,己知∠PAB=25°.
(1)若BC是⊙O的直徑,求∠D的大;
(2)若∠DAE=25°,求證:DA2=DCBP.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,l是過定點(diǎn)P(4,2)且傾斜角為α的直線;在極坐標(biāo)系(以坐標(biāo)原點(diǎn)O為極點(diǎn),
以x軸非負(fù)半軸為極軸,取相同單位長度)中,曲線C的極坐標(biāo)方程為.
(1)寫出直線l的參數(shù)方程,并將曲線C的方程化為直角坐標(biāo)方程;
(2)若曲線C與直線相交于不同的兩點(diǎn)M,N,求|PM|+|PN|的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=alnx+ ,曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y=2.
(I)求a、b的值;
(Ⅱ)當(dāng)x>1時,不等式f(x)> 恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)若不等式恒成立,求實(shí)數(shù)的最大值;
(2)當(dāng)時,函數(shù)有零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓E的中心在坐標(biāo)原點(diǎn),左、右焦點(diǎn)F1、F2分別在x軸上,離心率為 ,在其上有一動點(diǎn)A,A到點(diǎn)F1距離的最小值是1,過A、F1作一個平行四邊形,頂點(diǎn)A、B、C、D都在橢圓E上,如圖所示.
(Ⅰ)求橢圓E的方程;
(Ⅱ)判斷ABCD能否為菱形,并說明理由.
(Ⅲ)當(dāng)ABCD的面積取到最大值時,判斷ABCD的形狀,并求出其最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=x2+alnx.
(1)若a=﹣1,求函數(shù)f(x)的極值,并指出極大值還是極小值;
(2)若a=1,求函數(shù)f(x)在[1,e]上的最值;
(3)若a=1,求證:在區(qū)間[1,+∞)上,函數(shù)f(x)的圖象在g(x)=x3的圖象下方.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,底面△ABC是邊長為2的等邊三角形,D為AB中點(diǎn).
(1)求證:BC1∥平面A1CD;
(2)若四邊形BCC1B1是正方形,且A1D= ,求直線A1D與平面CBB1C1所成角的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某商場銷售某種品牌的空調(diào)器,每周周初購進(jìn)一定數(shù)量的空調(diào)器,商場每銷售一臺空調(diào)器可獲利500元,若供大于求,則每臺多余的空調(diào)器需交保管費(fèi)100元;若供不應(yīng)求,則可從其他商店調(diào)劑供應(yīng),此時每臺空調(diào)器僅獲利潤200元.
(Ⅰ)若該商場周初購進(jìn)20臺空調(diào)器,求當(dāng)周的利潤(單位:元)關(guān)于當(dāng)周需求量n(單位:臺,n∈N)的函數(shù)解析式f(n);
(Ⅱ)該商場記錄了去年夏天(共10周)空調(diào)器需求量n(單位:臺),整理得表:
周需求量n | 18 | 19 | 20 | 21 | 22 |
頻數(shù) | 1 | 2 | 3 | 3 | 1 |
以10周記錄的各需求量的頻率作為各需求量發(fā)生的概率,若商場周初購進(jìn)20臺空調(diào)器,X表示當(dāng)周的利潤(單位:元),求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com