科目: 來源: 題型:
【題目】已知函數(shù)f(x)=log2(5﹣x)﹣log2(5+x)+1+m
(1)若f(x)是奇函數(shù),求實數(shù)m的值.
(2)若m=0,則是否存在實數(shù)x,使得f(x)>2?若存在,求出x的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知集合A={y|y=x2﹣2x﹣3,x∈R},B={x|log2x<﹣1},C={k|函數(shù)f(x)= 在(0,+∞)上是增函數(shù)}.
(1)求A,B,C;
(2)求A∩C,(UB)∪C.
查看答案和解析>>
科目: 來源: 題型:
【題目】設拋物線y2=2px(p>0)的焦點為F,其準線與x軸的交點為Q,過Q點的直線l交拋物線于A,B兩點.
(1)若直線l的斜率為 ,求證: ;
(2)設直線FA,F(xiàn)B的斜率分別為k1 , k2 , 求k1+k2的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】己知圓C1的參數(shù)方程為 (φ為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,圓C2的極坐標方程為ρ=2 cos(θ﹣ ). (Ⅰ)將圓C1的參數(shù)方程他為普通方程,將圓C2的極坐標方程化為直角坐標方程;
(Ⅱ)圓C1 , C2是否相交,若相交,請求出公共弦的長;若不相交,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=loga(ax﹣1)( a>0,a≠1 )
(1)討論函數(shù)f(x)的定義域;
(2)當a>1時,解關于x的不等式:f(x)<f(1);
(3)當a=2時,不等式f(x)﹣log2(1+2x)>m對任意實數(shù)x∈[1,3]恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】P是雙曲線 =1(a>0,b>0)上的點,F(xiàn)1、F2是其焦點,且 =0,若△F1PF2的面積是9,a+b=7,則雙曲線的離心率為( )
A.
B.
C.
D.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知中心在原點的雙曲線C的右焦點為(2,0),右頂點為( ,0)
(1)求雙曲線C的方程;
(2)若直線l:y=kx+ 與雙曲線C恒有兩個不同的交點A和B,且 >2(其中O為原點).求k的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】某農(nóng)場種植黃瓜,根據(jù)多年的市場行情得知,從春節(jié)起的300天內,黃瓜市場售價與上市時間的關系用圖1所示的一條折線表示,黃瓜的種植成本與上市時間的關系用圖2所示的拋物線表示.(注:市場售價和種植成本的單位:元/kg,時間單位:天)
(1)寫出圖1表示的市場售價與時間的函數(shù)關系式P=f(t);寫出圖2表示的種植成本與時間的函數(shù)關系式Q=g(x);
(2)認定市場售價減去種植成本為純收益,問從春節(jié)開始的第幾天上市的黃瓜純收益最大?并求出最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知二次函數(shù)f(x)=x2﹣2ax+1,a∈R;
(1)若函數(shù)f(x)在區(qū)間(﹣1,2)上是單調函數(shù),求實數(shù)a的取值范圍;
(2)若不等式f(x)>0對任x∈R上恒成立,求實數(shù)a的取值范圍;
(3)若函數(shù)f(x)在區(qū)間[1,+∞)的最小值為﹣2,求實數(shù)a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com