科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知以M為圓心的圓M:x2+y2﹣12x﹣14y+60=0及其上一點(diǎn)A(2,4).
(1)設(shè)圓N與x軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標(biāo)準(zhǔn)方程;
(2)設(shè)平行于OA的直線l與圓M相交于B、C兩點(diǎn),且BC=OA,求直線l的方程;
(3)設(shè)點(diǎn)T(t,0)滿足:存在圓M上的兩點(diǎn)P和Q,使得 + = ,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知等比數(shù)列{an}的公比q>1,且a1+a3=20,a2=8. (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè) ,Sn是數(shù)列{bn}的前n項(xiàng)和,對任意正整數(shù)n不等式 恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,有一直徑為8米的半圓形空地,現(xiàn)計(jì)劃種植果樹,但需要有輔助光照.半圓周上的C處恰有一可旋轉(zhuǎn)光源滿足果樹生長的需要,該光源照射范圍是 ,點(diǎn)E,F(xiàn)在直徑AB上,且 .
(1)若 ,求AE的長;
(2)設(shè)∠ACE=α,求該空地種植果樹的最大面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和Sn , 且an= (n∈N*). (Ⅰ)若數(shù)列{an+t}是等比數(shù)列,求t的值;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)記bn= + ,求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中, 平面PCD,平面PAD平面ABCD,CD⊥AD,△APD為等腰直角三角形, .
(1)證明:平面PAB⊥平面PCD;
(2)若三棱錐B﹣PAD的體積為 ,求平面PAD與平面PBC所成二面角的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知二次函數(shù)f(x)=ax2+bx+1滿足f(﹣1)=0,且x∈R時(shí),f(x)的值域?yàn)閇0,+∞).
(1)求f(x)的表達(dá)式;
(2)設(shè)函數(shù)g(x)=f(x)﹣2kx,k∈R. ①若g(x)在x∈[﹣2,2]時(shí)是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍;
②若g(x)在x∈[﹣2,2]上的最小值g(x)min=﹣15,求k值.
查看答案和解析>>
科目: 來源: 題型:
【題目】△ABC中,角A,B,C的對邊分別是a,b,c且滿足(2a﹣c)cosB=bcosC,
(1)求角B的大小;
(2)若△ABC的面積為為 且b= ,求a+c的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】若圓C1:x2+y2=m與圓C2:x2+y2﹣6x﹣8y+16=0外切. (Ⅰ)求實(shí)數(shù)m的值;
(Ⅱ)若圓C1與x軸的正半軸交于點(diǎn)A,與y軸的正半軸交于點(diǎn)B,P為第三象限內(nèi)一點(diǎn),且點(diǎn)P在圓C1上,直線PA與y軸交于點(diǎn)M,直線PB與x軸交于點(diǎn)N,求證:四邊形ABNM的面積為定值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,D,E分別為AB,BC的中點(diǎn),點(diǎn)F在側(cè)棱B1B上,且B1D⊥A1F,A1C1⊥A1B1 . 求證:
(1)直線DE∥平面A1C1F;
(2)平面B1DE⊥平面A1C1F.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com