科目: 來源: 題型:
【題目】如圖1,二次函數(shù)y=ax2﹣2ax﹣3a(a<0)的圖象與x軸交于A、B兩點(點A在點B的右側),與y軸的正半軸交于點C,頂點為D.
(1)求頂點D的坐標(用含a的代數(shù)式表示);
(2)若以AD為直徑的圓經(jīng)過點C.
①求拋物線的函數(shù)關系式;
②如圖2,點E是y軸負半軸上一點,連接BE,將△OBE繞平面內(nèi)某一點旋轉180°,得到△PMN(點P、M、N分別和點O、B、E對應),并且點M、N都在拋物線上,作MF⊥x軸于點F,若線段MF:BF=1:2,求點M、N的坐標;
③點Q在拋物線的對稱軸上,以Q為圓心的圓過A、B兩點,并且和直線CD相切,如圖3,求點Q的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】將長方形紙片ABCD如圖折疊,B、C 兩點恰好重合落在AD 邊上的同一點P 處,折痕分別是MH、NG,已知∠MPN=90°,且PM=3,MN=5.則△PGN面積為____.
查看答案和解析>>
科目: 來源: 題型:
【題目】下列命題:①如果3、4、5為一組勾股數(shù),那么3k、4k、5k仍是勾股數(shù);②含有45°角的直角三角形的三邊長之比是1∶1:;③如果一個三角形的三邊是9,12,13,那么此三角形是直角三角形;④一個直角三角形的兩邊長是3和4,它的斜邊是5.其中正確的個數(shù)是 ( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目: 來源: 題型:
【題目】直角坐標系中,已知A(1,0),以點A為圓心畫圓,點M(4,4)在⊙A上,直線y=﹣x+b過點M,分別交x軸、y軸于B、C兩點.
(1)①填空:⊙A的半徑為 ,b= .(不需寫解答過程)
②判斷直線BC與⊙A的位置關系,并說明理由.
(2)若EF切⊙A于點F分別交AB和BC于G、E,且FE⊥BC,求的值.
(3)若點P在⊙A上,點Q是y軸上一點且在點C下方,當△PQM為等腰直角三角形時,直接寫出點Q的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,等腰中,,點A、B分別在坐標軸上.
(1)如圖①,若,,求C點的坐標;
(2)如圖②,若點A的坐標為,點B在y軸的正半軸上運動時,分別以OB,AB為邊在第一,第二象限作等腰,等腰,連接EF交y軸于P點,當點B在y軸上移動時,PB的長度是否變化?如果不變求出PB值,如果變化求PB的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】2013年初春,我國西北部分省區(qū)發(fā)生了雪災,造成通訊受阻.如圖,現(xiàn)有某處山坡上一座發(fā)射塔被冰雪從C處壓折,塔尖恰好落在坡面上的點B處,在B處測得點C的仰角為45°,塔基A的俯角為30°,又測得斜坡上點A到點B的坡面距離AB為20米,求折斷前發(fā)射塔的高.
查看答案和解析>>
科目: 來源: 題型:
【題目】在學校開展的數(shù)學活動課上,小明和小剛制作了一個正三樓錐(質量均勻,四個面完全相同),并在各個面上分別標記數(shù)字1,2,3,4,游戲規(guī)則如下每人投擲三棱錐兩次,并記錄底面的數(shù)字,如果兩次所擲數(shù)字的和為單數(shù),那么算小明贏,如果兩歡所擲數(shù)字的和為偶數(shù),那么算小明贏;
(1)請用列表或者面樹狀圍的方法表示上述游戲中的所有可能結果.
(2)請分別隸出小明和小剛能贏的概率,并判新游戲的公平性.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,⊙O為△ABC的外接圓,AB=AC,直線MN與⊙O相切于點C,弦BD∥MN,AC與BD相交于點E.
(1)求證:△ABE ≌ △ACD;
(2)若AB = 5,BC = 3,求AE.
查看答案和解析>>
科目: 來源: 題型:
【題目】(1) 如圖1,在正方形ABCD中,點E,F分別在邊BC,CD上,AE,BF交于點O,∠AOF=90°.求證:BE=CF.
(2) 如圖2,在正方形ABCD中,點E,H,F,G分別在邊AB,BC,CD,DA上,EF,GH交于點O,∠FOH=90°, EF=4.求GH的長.
(3) 已知點E,H,F,G分別在矩形ABCD的邊AB,BC,CD,DA上,EF,GH交于點O,∠FOH=90°,EF=4. 直接寫出下列兩題的答案:
①如圖3,矩形ABCD由2個全等的正方形組成,求GH的長;
②如圖4,矩形ABCD由n個全等的正方形組成,求GH的長(用n的代數(shù)式表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com